ВЛИЯНИЕ НЕБЛАГОПРИЯТНЫХ ФАКТОРОВ ОКРУЖАЮЩЕЙ СРЕДЫ НА ЧАСТОТУ ВОЗНИКНОВЕНИЯ ПАТОЛОГИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ СРЕДИ НАСЕЛЕНИЯ
https://doi.org/10.64854/2790-1289-2025-49-3-13
Аннотация
Заболевания щитовидной железы возникают как из-за внутренних, так и из-за внешних факторов. Изменяющиеся экологические и радиационные условия способствуют росту распространенности и изменению характера заболеваний щитовидной железы. В этом обзоре представлены современные данные о том, как внешние воздействия влияют на структуру и функцию щитовидной железы, включая недавние открытия, механизмы и области, требующие дальнейших исследований.
Цель исследования. Анализ научных источников, которые рассматривают влияние неблагоприятных производственных факторов окружающей среды на функционирование щитовидной железы.
Материалы и методы. Поиск исследований был проведён в электронных базах данных PubMed, Web of Science и Scopus с использованием соответствующих терминов и ключевых слов. Включены только оригинальные наблюдательные исследования, изучающие воздействие вредных факторов окружающей среды на возникновение патологий щитовидной железы.
Результаты. Высокие уровни тяжёлых металлов (Pb, Hg, Cd, As) связаны с повышенным риском рака щитовидной железы. В нефтегазовых регионах у детей выявляется повышенное содержание марганца, бора, ванадия и кремния в волосах, что нарушает усвоение йода и вызывает йододефицит. Кадмий снижает уровень тиреотропного гормона, способствуя развитию гипертиреоза. В районах, подвергшихся радиационному воздействию (например, Чернобыль, Семей), чаще наблюдаются узловые образования и аутоиммунный тиреоидит. Мелкие твердые частицы (PM2.5, PM10) повышают риск рака щитовидной железы, а воздействие загрязнённого воздуха во время беременности изменяет уровень Т4 у новорождённых.
Заключение. Экологические загрязнители, включая тяжёлые металлы, воздействие радиации, промышленные отходы и загрязнители, химические вещества, нарушающие работу эндокринной системы, играют значительную роль в возникновении и прогрессировании заболеваний щитовидной железы. Рост хронических заболеваний, в том числе патологий щитовидной железы, служит маркером экологического загрязнения.
Об авторах
Л. З. НазароваКазахстан
PhD докторант 3 курса по ОП Общественное здравоохранение КазНМУ им. С.Д. Асфендиярова
М. А. Мабрук
Казахстан
Т. М. Абдирова
Казахстан
М. Р. Сабри
Казахстан
Н. Н. Айтамбаева
Казахстан
Н. Н. Нарымбаева
Казахстан
Ш. М. Светланова
Казахстан
А. К. Сактапов
Казахстан
Б. Қ. Сыдықова
Казахстан
Г. Ж. Аханов
Казахстан
Список литературы
1. Yakubouski S. U., et al. Epidemiology of benign thyroid disorders in the adult population of the Republic of Belarus: Analysis of nationwide statistics 2009 to 2019 // Problems of Endocrinology. – 2022. – Vol. 68(3). – P. 30-43. – DOI 10.14341/probl12844.
2. Fitzgerald S. P., Bean, et al. Physiological linkage of thyroid and pituitary sensitivities // Endocrine. – 2023. – Vol. 79. – P. 143-151. – DOI 10.1007/s12020-022-03184-8.
3. Zbigniew S. Role of iodine in metabolism // Recent Patents on Endocrine, Metabolic & Immune Drug Discovery. – 2017. – Vol. 10(2). – P. 123-126. – DOI 10.2174/1872214811666170119110618.
4. Toloza F. J. K., Mao Y., Menon L., George G. Association of thyroid function with suicidal behavior: A systematic review and meta-analysis // Medicina (Kaunas). – 2021. – Vol. 57(7). – P. 714. – DOI 10.3390/medicina57070714.
5. Yazbeck C. F., Sullivan S. D. Thyroid disorders during pregnancy // Medical Clinics of North America. – 2012. – Vol. 96(2). – P. 235-256. – DOI 10.1016/j.mcna.2012.01.004.
6. Danzi S., Klein I. Thyroid hormone and the cardiovascular system // Medical Clinics of North America. – 2012. – Vol. 96(2). – P. 257-268. – DOI 10.1016/j.mcna.2012.01.006.
7. Street M. E., et al. The impact of environmental factors and contaminants on thyroid function and disease from fetal to adult life: Current evidence and future directions // Frontiers in Endocrinology (Lausanne). – 2024. – Vol. 15. – Article No. 1429884. – DOI 10.3389/fendo.2024.1429884.
8. Zeng Y., et al. Climate and air pollution exposure are associated with thyroid function parameters: A retrospective cross-sectional study // Journal of Endocrinological Investigation. – 2021. – Vol. 44(7). – P. 1515-1523.
9. Vareda J. P., et al. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review // Journal of Environmental Management. – 2019. – Vol. 246. – P. 101-118.
10. Hosseini M. J., et al. A worldwide systematic review, meta-analysis and meta-regression of nitrate and nitrite in vegetables and fruits // Ecotoxicology and Environmental Safety. – 2023. – Vol. 257. – Article No. 114934.
11. WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. – Geneva: WHO, 2021. – 219 p.
12. Benvenga S., et al. Endocrine disruptors and thyroid autoimmunity // Best Practice & Research Clinical Endocrinology & Metabolism. – 2020. – Vol. 34(1). – Article No. 101377. – DOI 10.1016/j.beem.2020.101377.
13. Pellegriti G., et al. Worldwide increasing incidence of thyroid cancer: Update on epidemiology and risk factors // Journal of Cancer Epidemiology. – 2013. – Vol. 965212.
14. Carlé A., et al. Epidemiology of nodular goitre: Influence of iodine intake // Best Practice & Research Clinical Endocrinology & Metabolism. – 2014. – Vol. 28(4). – С. 465-479.
15. Ferrari S. M., Fallahi P., et al. Environmental issues in thyroid diseases // Frontiers in Endocrinology (Lausanne). – 2017. – Vol. 8(50). – DOI 10.3389/fendo.2017.00050.
16. Kazakova M. P., Tskaeva A. A., Starostina E. A., Troshina E. A. Autoimmune thyroiditis – what’s new? // Clinical and Experimental Thyroidology. – 2023. – Vol. 19(4). – С. 4-12.
17. Zimmermann M. B., Boelaert K. Iodine deficiency and thyroid disorders // The Lancet Diabetes & Endocrinology. – 2015. – Vol. 3(4). – С. 286-295. – DOI 10.1016/S2213-8587(14)70225-6.
18. Bekenov N., et al. Diffuse enlargement of the thyroid gland as a result of the impact of adverse factors on the pituitary-thyroid system of children // Bangladesh Journal of Medical Science. – 2024. – Vol. 23(4). – С. 1213-1218. – DOI 10.3329/bjms.v23i4.76539.
19. Troshina E. A., et al. Structural and morphologic characteristics of nodular goiter in chronic iodine deficiency status // Clinical and Experimental Thyroidology. – 2023. – Vol. 19(1). – С. 20-28.
20. Andersen S. L., Andersen S. Turning to thyroid disease in pregnant women // European Thyroid Journal. – 2020. – Vol. 9(5). – С. 2250233. – DOI 10.1159/000506228.
21. Henrichs J. et al. Maternal hypothyroxinemia and effects on cognitive functioning in childhood: how and why? // Clinical Endocrinology (Oxford). – 2013. – Vol. 79(2). – P. 152-162. – DOI: 10.1111/cen.12227.
22. Lundgaard M.H. et al. Maternal hypothyroidism and the risk of preeclampsia: a Danish national and regional study // Maternal Health, Neonatology and Perinatology. – 2024. – Vol. 10(1). – P. 16. – DOI: 10.1186/s40748-024-00181-3.
23. Ignatenko G.A. et al. The impact of environmental pollution on population health: the relationship between trace element imbalance and various cardiovascular pathologies: monograph. – Chita: Transbaikal State University, 2021. – 231 p.
24. Esposito D. et al. Influence of short-term selenium supplementation on the natural course of Hashimoto’s thyroiditis: clinical results of a blinded placebo-controlled randomized prospective trial // Journal of Endocrinological Investigation. – 2017. – Vol. 40. – P. 83-89. – DOI: 10.1007/s40618-016-0556-y.
25. Mamyrbaev A.A. et al. The content of metals in hair and blood in the child population of cities of Aktobe Region // Gigiena i Sanitariya. – 2012. – Vol. 3. – P. 61-62.
26. Kudabayeva Kh.I. et al. Role of trace elements imbalance in development of endemic goitre among schoolchildren in oil and gas districts of the western region of the Republic of Kazakhstan // Journal of Trace Elements in Medicine and Biology. – 2016. – Vol. 36. – P. 36-44. – DOI: 10.1016/j.jtemb.2016.03.006.
27. Vigneri R. et al. Heavy metals in the volcanic environment and thyroid cancer // Molecular and Cellular Endocrinology. – 2017. – Vol. 457. – P. 73-80. – DOI: 10.1016/j.mce.2016.10.027.
28. Kudabayeva Kh.I. et al. The problem of iodine deficiency disorders in the Republic of Kazakhstan // West Kazakhstan Medical Journal. – 2013. – Vol. 3 (39). – P. 18-23.
29. Vareda J.P., Valente A.J.M., Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review // Journal of Environmental Management. – 2019. – Vol. 246. – P. 101-118. – DOI: 10.1016/j.jenvman.2019.05.126.
30. Savchenko O.V., Toupeleev P.A. Lead, cadmium, manganese, cobalt, zinc and copper levels in whole blood of urban teenagers with non-toxic diffuse goiter // International Journal of Environmental Health Research. – 2012. – Vol. 22(1). – P. 51-59. – DOI: 10.1080/09603123.2011.588324.
31. Malandrino P. et al. Increased thyroid cancer incidence in volcanic areas: a role of increased heavy metals in the environment? // International Journal of Molecular Sciences. – 2020. – Vol. 21(10). – P. 3425. – DOI: 10.3390/ijms21103425.
32. Malandrino P. et al. Concentration of metals and trace elements in the normal human and rat thyroid: comparison with muscle and adipose tissue and volcanic versus control areas // Thyroid. – 2019. – Vol. 30. – P. 290-299. – DOI: 10.1089/thy.2019.0244.
33. Buha A. et al. Overview of cadmium thyroid disrupting effects and mechanisms // International Journal of Molecular Sciences. – 2018. – Vol. 19(5). – P. 1501. – DOI: 10.3390/ijms19051501.
34. Klaassen C.D., Liu J., Diwan B.A. Metallothionein protection of cadmium toxicity // Toxicology and Applied Pharmacology. – 2009. – Vol. 238. – P. 215-220. – DOI: 10.1016/j.taap.2009.03.026.
35. Faroon O. et al. Toxicological profile for cadmium. – Atlanta (GA): Agency for Toxic Substances and Disease Registry (US), 2012. – September.
36. Jain R.B., Choi Y.S. Interacting effects of selected trace and toxic metals on thyroid function // International Journal of Environmental Health Research. – 2016. – Vol. 26. – P. 75-91. – DOI: 10.1080/09603123.2015.1020421.
37. Luo J., Hendryx M. Relationship between blood cadmium, lead, and serum thyroid measures in US adults (NHANES 2007–2010) // International Journal of Environmental Health Research. – 2014. – Vol. 24. – P. 125-136. – DOI: 10.1080/09603123.2013.800962.
38. Rosati M.V. et al. Correlation between urinary cadmium and thyroid hormones in outdoor workers exposed to urban stressors // Toxicology and Industrial Health. – 2016. – Vol. 32. – P. 1978-1986. – DOI: 10.1177/0748233715585588.
39. Jurdziak M. et al. Concentration of thyrotropic hormone in persons occupationally exposed to lead, cadmium and arsenic // Biological Trace Element Research. – 2018. – Vol. 182. – P. 196-203. – DOI: 10.1007/s12011-017-1088-5.
40. Nie X., Chen Y. et al. Lead and cadmium exposure, higher thyroid antibodies and thyroid dysfunction in Chinese women // Environmental Pollution. – 2017. – Vol. 230. – P. 320-328. – DOI: 10.1016/j.envpol.2017.06.050.
41. Rasic-Milutinovic Z. et al. Potential influence of selenium, copper, zinc and cadmium on L-thyroxine substitution in patients with Hashimoto thyroiditis and hypothyroidism // Experimental and Clinical Endocrinology & Diabetes. – 2017. – Vol. 125. – P. 79-85. – DOI: 10.1055/s-0042-116070.
42. Liu L. et al. Thyroid disruption and reduced mental development in children from an informal E-waste recycling area: a mediation analysis // Chemosphere. – 2018. – Vol. 193. – P. 498-505. – DOI: 10.1016/j.chemosphere.2017.11.031.
43. Bray F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries // CA: A Cancer Journal for Clinicians. – 2024. – Vol. 74(3). – P. 229-263. – DOI: 10.3322/caac.21834.
44. Zhang L. et al. Prioritizing of potential environmental exposure carcinogens beyond IARC group 1–2B based on weight of evidence (WoE) approach // Regulatory Toxicology and Pharmacology. – 2024. – Vol. 150. – Article No. 105646. – DOI: 10.1016/j.yrtph.2024.105646.
45. Rahib L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States // Cancer Research. – 2014. – Vol. 74(11. – P. 2913-2921. – DOI: 10.1158/0008-5472.CAN-14-0155.
46. Park E. et al. Environmental exposure to cadmium and risk of thyroid cancer from national industrial complex areas: a population-based cohort study // Chemosphere. – 2021. – Vol. 268. – Article No. 128819. – DOI: 10.1016/j.chemosphere.2020.128819.
47. Falnoga I. et al. Mercury, selenium, and cadmium in human autopsy samples from Idrija residents and mercury mine workers // Environmental Research. – 2000. – Vol. 84. – P. 211-218. – DOI: 10.1006/enrs.2000.4112.
48. Chung H.K. et al. Some elements in thyroid tissue are associated with more advanced stage of thyroid cancer in Korean women // Biological Trace Element Research. – 2016. – Vol. 171. – P. 135-720. – DOI: 10.1007/s12011-015-0502-5.
49. Hu Q., Han X., Dong G. et al. Association between mercury exposure and thyroid hormones levels: a meta-analysis // Environmental Research. – 2021. – Vol. 196. – Article No. 110928. – DOI: 10.1016/j.envres.2020.110928.
50. Soldin O.P., Aschner M. Effects of manganese on thyroid hormone homeostasis: potential links // Neurotoxicology. – 2007. – Vol. 28. – P. 951-956. – DOI: 10.1016/j.neuro.2007.05.003.
51. Vargas A.C., et al. Exposure to common-use pesticides, manganese, lead, and thyroid function among pregnant women from the Infants’ Environmental Health (ISA) study, Costa Rica // Science of the Total Environment. – 2021. – Vol. 810. – P. 151288. – DOI: 10.1016/j.scitotenv.2021.151288.
52. Sun H., et al. Mechanisms of arsenic disruption on gonadal, adrenal and thyroid endocrine systems in humans: A review // Environment International. – 2016. – Vol. 95. – P. 61-68.
53. Zidane M., et al. Non-Essential Trace Elements Dietary Exposure in French Polynesia: Intake Assessment, Nail Bio Monitoring and Thyroid Cancer Risk // Asian Pacific Journal of Cancer Prevention (APJCP). – 2019. – Vol. 20. – P. 355-367. – DOI: 10.31557/APJCP.2019.20.2.355.
54. Peng Xiaokun, et al. Effect of lead exposure on thyroid hormone levels in occupationally exposed populations: a Meta-analysis // Chinese Journal of Disease Control & Prevention. – 2024. – Vol. 28(7). – P. 856-863. – DOI: 10.16462/j.cnki.zhjbkz.2024.07.017.
55. Li H., et al. Correlation between serum lead and thyroid diseases: Papillary thyroid carcinoma, nodular goiter, and thyroid adenoma // International Journal of Environmental Health Research. – 2017. – Vol. 27. – P. 409-419.
56. Shen F., et al. The Association Between Serum Levels of Selenium, Copper, and Magnesium with Thyroid Cancer: a Meta-analysis // Biological Trace Element Research. – 2015. – Vol. 167(2). – P. 225-235. – DOI: 10.1007/s12011-015-0304-9.
57. Gumulec J., et al. Serum and tissue zinc in epithelial malignancies: a meta-analysis // PLoS One. – 2014. – Vol. 9(6). – Article No. 99790. – DOI: 10.1371/journal.pone.0099790.
58. Xu M., et al. Copper chelation as targeted therapy in a mouse model of oncogenic BRAF-driven papillary thyroid cancer // Clinical Cancer Research. – 2018. – Vol. 24. – P. 4271-4281.
59. van Gerwen M., Alerte E., et al. The role of heavy metals in thyroid cancer: A meta-analysis // Journal of Trace Elements in Medicine and Biology. – 2022. – Vol. 69. – P. 126900. – DOI: 10.1016/j.jtemb.2021.126900.
60. Luz A.L., Wu X. Toxicology of inorganic carcinogens // Advances in Molecular Toxicology. – 2018. – Vol. 12. – P. 1-46.
61. Fallahi P., et al. Vanadium pentoxide induces the secretion of CXCL9 and CXCL10 chemokines in thyroid cells // Oncology Reports. – 2018. – Vol. 39. – P. 2422-2426. – DOI: 10.3892/or.2018.6307.
62. Giannoula E., et al. Ecological study on thyroid cancer incidence and mortality in association with European Union member states' air pollution // International Journal of Environmental Research and Public Health. – 2020. – Vol. 18(1). – P. 153. – DOI: 10.3390/ijerph18010153.
63. Karzai S., et al. Ambient particulate matter air pollution is associated with increased risk of papillary thyroid cancer // Surgery. – 2021. – Article No. 0039-6060(21). – P. 415-423. – DOI: 10.1016/j.surg.2021.06.031.
64. Cong X. Air pollution from industrial waste gas emissions is associated with cancer incidences in Shanghai, China // Environmental Science and Pollution Research International. – 2018. – Vol. 25(13). – P. 13067-13078. – DOI: 10.1007/s11356-018-1522-4.
65. Howe C.G., et al. Association of prenatal exposure to ambient and traffic-related air pollution with newborn thyroid function: Findings from the children's health study // JAMA Network Open. – 2018. – Vol. 1. – Article No. 182172. – DOI: 10.1001/jamanetworkopen.2018.2172.
66. Irizar A., et al. Association between prenatal exposure to air pollutants and newborn thyroxine (T4) levels // Environmental Research. – 2021. – Vol. 197. – Article No. 111132. – DOI: 10.1016/j.envres.2021.111132.
67. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and effects of ionizing radiation: UNSCEAR 2008 report to the General Assembly with Scientific Annexes. – New York: United Nations, 2011. – Vol. 1. – 313 p.
68. Marcello M.A., et al. The influence of the environment on the development of thyroid tumors: a new appraisal // Endocrine-Related Cancer. – 2014. – Vol. 21. – P. 235-254. – DOI: 10.1530/ERC-14-0057.
69. Sadeghi H., et al. Attributable risk fraction of four lifestyle risk factors of thyroid cancer: a meta-analysis // Journal of Public Health (Oxford). – 2018. – Vol. 40. – P. 91-98. – DOI: 10.1093/pubmed/fdx088.
70. Sirikul W., Sapbamrer R. Exposure to pesticides and the risk of hypothyroidism: a systematic review and meta-analysis // BMC Public Health. – 2023. – Vol. 23(1). – Article No. 1867. – DOI: 10.1186/s12889-023-16644-8.
71. Kruger E., et al. Thyroid carcinoma: A review for 25 years of environmental risk factors studies // Cancers (Basel). – 2022. – Vol. 14(24). – P. 6172. – DOI: 10.3390/cancers14246172.
72. Han M.A., Kim J.H., Song H.S. Persistent organic pollutants, pesticides, and the risk of thyroid cancer: Systematic review and meta-analysis // European Journal of Cancer Prevention. – 2019. – Vol. 28. – P. 344-349. – DOI: 10.1097/CEJ.0000000000000457.
73. Lerro C.C., et al. Pesticide exposure and incident thyroid cancer among male pesticide applicators in agricultural health study // Environment International. – 2020. – Vol. 146. – Article No. 106187. – DOI: 10.1016/j.envint.2020.106187.
74. Freeman L.E.B., et al. Atrazine and cancer incidence among pesticide applicators in the Agricultural Health Study (1994-2007) // Environmental Health Perspectives. – 2011. – Vol. 119. – P. 1253-1259. – DOI: 10.1289/ehp.1103561.
75. Zeng F., et al. Occupational exposure to pesticides and other biocides and risk of thyroid cancer // Occupational and Environmental Medicine. – 2017. – Vol. 74. – P. 502-510. – DOI: 10.1136/oemed-2016-103931.
76. Lerro C.C., et al. Pesticide exposure and incident thyroid cancer among male pesticide applicators in agricultural health study // Environment International. – 2020. – Vol. 146. – P. 106187. – DOI: 10.1016/j.envint.2020.106187.
77. Lerro C.C., et al. A nested case-control study of polychlorinated biphenyls, organochlorine pesticides, and thyroid cancer in the Janus Serum Bank cohort // Environmental Research. – 2018. – Vol. 165. – P. 125-132. – DOI: 10.1016/j.envres.2018.04.012.
78. Zendehbad M., et al. Nitrate in groundwater and agricultural products: intake and risk assessment in northeastern Iran // Environmental Science and Pollution Research International. – 2022. – Vol. 29. – P. 78603-78619.
79. Park S.J., et al. National cohort and meteorological data-based nested case-control study on the association between air pollution exposure and thyroid cancer // Scientific Reports. – 2021. – Vol. 11(1). – Article No. 21562. – DOI: 10.1038/s41598-021-00882-7.
80. Qi C., et al. Maternal exposure to O₃ and NO₂ may increase the risk of newborn congenital hypothyroidism: a national data-based analysis in China // Environmental Science and Pollution Research International. – 2021. – Vol. 28. – P. 34621-34629. – DOI: 10.1007/s11356-021-13083-6.
81. California Office of Environmental Health Hazard Assessment (OEHHA). Nitrate and Nitrite in Drinking Water. – Sacramento, CA, 2018.
82. Drozd V.M., Saenko V.A., et al. Major factors affecting incidence of childhood thyroid cancer in Belarus after the Chernobyl accident: Do nitrates in drinking water play a role? // PLoS One. – 2015. – Vol. 10(9). – Article No. 0137226. – DOI: 10.1371/journal.pone.0137226.
83. Yamamoto H., Hayashi K., Scherb H. Association between the detection rate of thyroid cancer and the external radiation dose-rate after the nuclear power plant accidents in Fukushima, Japan // Medicine. – 2019. – Vol. 98. – Article No. 17165. – DOI: 10.1097/md.0000000000017165.
84. Winder M., et al. The impact of iodine concentration disorders on health and cancer // Nutrients. – 2022. – Vol. 14. – P. 2209. – DOI: 10.3390/nu14112209.
85. Weiss W. Chernobyl thyroid cancer: 30 years of follow-up overview // Radiation Protection Dosimetry. – 2018. – Vol. 182. – P. 58-61. – DOI: 10.1093/rpd/ncy147.
86. McCall C. Chernobyl disaster 30 years on: Lessons not learned // The Lancet. – 2016. – Vol. 387. – P. 1707-1708.
87. Ivanov V.K., et al. Radiation-epidemiological studies of thyroid cancer incidence in Russia after the Chernobyl accident (estimation of radiation risks, 1991–2008 follow-up period) // Radiation Protection Dosimetry. – 2012. – Vol. 151. – P. 489-499. – DOI: 10.1093/rpd/ncs019.
88. Suzuki K., et al. Radiation-induced thyroid cancers: Overview of molecular signatures // Cancers (Basel). – 2019. – Vol. 11. – P. 1109-1290. – DOI: 10.3390/cancers11091290.
89. Little M.P., et al. Age effects on radiation response: Summary of a recent symposium and future perspectives // International Journal of Radiation Biology. – 2022. – Vol. 98. – P. 1673-1683.
90. Yamashita S., et al. Radiation exposure and thyroid cancer risk after the Fukushima nuclear power plant accident in comparison with the Chernobyl accident // Radiation Protection Dosimetry. – 2016. – Vol. 171. – P. 41-46. – DOI: 10.1093/rpd/ncw189.
91. Manatova A.M. Assessment of violations of nonspecific resistance and psychological status in descendants of persons exposed to radiation: Dissertation for the degree of Doctor of Philosophy (PhD). – Semey, 2020.
92. Bauer S., Gusev B., et al. The Legacies of Soviet Nuclear Testing in Kazakhstan: Fallout, Public Health and Societal Issues. Radioactivity in the Environment. – 2013. – Vol. 19. – P. 241-258.
93. Espenbetova M. Zh., Zamanbekova Zh. K., et al. Condition of the thyroid gland at the population of the areas adjacent to the former Semipalatinsk nuclear test site // Science and Healthcare. – 2014. – Vol. 5. – P. 28-32.
94. Malenchenko A. F., et al. Biological action of natural uranium on the thyroid gland // Astrakhan Medical Journal. – 2012. – Vol. 4. – P. 174-176.
95. Toychuyeva G. The effects of radionuclide factors on the development of autoimmune thyroiditis in senior children // Chemical Safety Science. – 2021. – Vol. 5. – P. 240-251. – DOI: 10.25514/CHS.2021.2.20015.
Рецензия
Для цитирования:
Назарова Л.З., Мабрук М.А., Абдирова Т.М., Сабри М.Р., Айтамбаева Н.Н., Нарымбаева Н.Н., Светланова Ш.М., Сактапов А.К., Сыдықова Б.Қ., Аханов Г.Ж. ВЛИЯНИЕ НЕБЛАГОПРИЯТНЫХ ФАКТОРОВ ОКРУЖАЮЩЕЙ СРЕДЫ НА ЧАСТОТУ ВОЗНИКНОВЕНИЯ ПАТОЛОГИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ СРЕДИ НАСЕЛЕНИЯ. Актуальные проблемы теоретической и клинической медицины. 2025;(3). https://doi.org/10.64854/2790-1289-2025-49-3-13
For citation:
Nazarova L.Z., Mabrouk M.A., Abdirova T.M., Sabri M.R., Aitambayeva N.N., Narymbayeva N.N., Svetlanova Sh.М., Saktapov A.K., Sydykova B.K., Akhanov G.Zh. THE INFLUENCE OF ADVERSE ENVIRONMENTAL FACTORS ON THE FREQUENCY OF THYROID PATHOLOGY AMONG THE POPULATION. Actual Problems of Theoretical and Clinical Medicine. 2025;(3). https://doi.org/10.64854/2790-1289-2025-49-3-13