Preview

Актуальные проблемы теоретической и клинической медицины

Расширенный поиск

АЛЛЕРГИЯ И РАК

https://doi.org/10.24412/2790-1289-2022-1-1022

Аннотация

Многие исследователи указывают на значительное снижение риска онкологической патологии у лиц, страдающих аллергическими заболеваниями. В настоящее время возросло понимание ключевой роли микроокружения в развитии опухоли. К ним относятся опухоль-ассоциированные макрофаги (TAM – tumor-associated macrophages), регуляторные Т-лимфоциты (Трег-клетки) и клетки - супрессоры миелоидного происхождения (MC). Известно, что IgE появляются при аллергии и эти антитела способны переформатировать проопухолевые макрофаги и Трег-клетки в сторону провоспалительного состояния и настраивать их на противоопухолевую функцию

Об авторе

Ю. А. Кузьмин
НУО «Казахстанско-Российский медицинский университет»
Казахстан

д.м.н., профессор



Список литературы

1. Флеминг М.В., Климов В.В., Чердынцева Н.В. О взаимовлиянии аллергических реакций и злокачественных процессов (Современное состояние проблемы) - Сибирский онкологический журнал. - 2005. - №1 (13).С.96-101.

2. Бережная Н.М., Ялкут С.И. Биологическая роль иммуноглобулина Е. Киев: Наук. думка, 1983. С. 90–106.

3. Bridget J. McCarthy, Kristin Rankin «Assessment of Type of Allergy and Antihistamine Use in the Development of Glioma». Cancer Epidemiology. 2011 Volume 20, Issue 2.

4. М. Костинов - Еженедельник / Аргументы и Факты. № 16, 2019. - 17 апрель.

5. McCormic D. et al., 1971, цит. по 22. Бережная Н.М., Ялкут С.И. Биологическая роль иммуноглобулина Е. Киев: Наук, думка, 1983. С. 90-106.

6. Ado B.A. [цит. по 3 З. Васильев Н.В., Волянский Ю.Л., Аллергия и экология: научно-познавательный очерк. Харьков: Основа, 1994. С. 235-250.

7. Wulaningsih W.; Holmberg L.; Garmo H. Investigating the association between allergen-specific immunoglobulin E, cancer risk and survival. Oncoimmunology 2016, 5.

8. Cui Y.; Hill A.W. Atopy and Specific Cancer Sites: A Review of Epidemiological Studies. Clin. Rev. Allergy Immunol. 2016, 51, 338–352.

9. Schwartzbaum J.; Seweryn M.; Holloman C. Association between Prediagnostic Allergy-Related Serum Cytokines and Glioma. PLoS ONE 2015, 10.

10. Josephs D.H.; Spicer J.F.; Epidemiological associations of allergy, IgE and cancer. Clin. Exp. Allergy 2013, 43, 1110–1123.

11. Ferastraoaru D.; Rosenstreich D. IgE deficiency is associated with high rates of new malignancies: Results of a longitudinal cohort study. J. Allergy Clin. Immunol. Pract. 2020, 8, 413–415.

12. Kitaeva K.V., Rutland C.S., Rizvanov A.A., Solovyeva V.V. Cell culture based in vitro test systems for anticancer drug screening // Front. Bioeng. Biotechnol. – 2020. – V. 8. – Art. 322, P. 1–9.

13. А. Атаи, В.В. Соловьева, А.А. Ризванов «Микроокружение Опухоли: Ключевой Фактор Развития Рака, Инвазии И Лекарственной Устойчивости Ученые Записки Казанского Университета. Серия Естественные Науки 2020, Т. 162, кн. 4

14. Chulpanova D.S., Kitaeva K.V., Tazetdinova L.G., James V., Rizvanov A.A., Solovyeva V.V. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment // Front. Pharmacol. – 2018. – V. 9. – Art. 259, P. 1–10.

15. Chulpanova D.S., Kitaeva K.V., Green A.R., Rizvanov A.A., Solovyeva V.V. Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy // Front. Cell Dev. Biol. – 2020. – V. 8. – Art. 402, P. 1–24.

16. Nielsen S.R., Schmid M.C. Macrophages as key drivers of cancer progression and metastasis. Mediators Inflamm. 2017; 2017(9624760).

17. Mantovani A., Locati M. Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: Lessons and open questions. Arterioscler Thromb Vasc Biol. 2013; 33:1478–1483.

18. Van Ginderachter J.A., Movahedi K., Hassanzadeh Ghassabeh G., Meerschaut S., Beschin A., Raes G., De Baetselier P. Classical and alternative activation of mononuclear phagocytes: Picking the best of both worlds for tumor promotion. Immunobiology. 2006; 211:487–501.

19. Zhukova O.V., Kovaleva T. F et al Tumorassociated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review) Biomed Rep. 2020 Nov; 13 (5): 47.

20. Chen Y., Song Y., Du W., Gong L., Chang H., Zou Z. Tumor-associated macrophages: An accomplice in solid tumor progression. J Biomed Sci. 2019;26 (78).

21. Jeannin P., Paolini L., Adam C., Delneste Y. The roles of CSFs on the functional polarization of tumorassociated macrophages. FEBS J. 2018; 285:680–699.

22. Wang H.W., Joyce J.A. Alternative activation of tumor-associated macrophages by IL-4: Priming for protumoral functions. Cell Cycle. 2010; 9:4824 – 4835.

23. Ding P., Wang W., Wang J., Yang Z., Xue L. Expression of tumor-associated macrophage in progression of human glioma. Cell Biochem Biophys. 2014; 70:1625–1631.

24. Sophia N. Karagiannis, Qin Wang, Nick East, Frances Burke Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells. Eur J Immunol. 2003 Apr; 33 (4):1030-40.

25. Tracy R. Daniels, Otoniel Martínez-Maza, Manuel L Penichet Animal models for IgE-meditated cancer immunotherapy Cancer Immunol Immunother. 2012 Sep;61(9): 1535-46.

26. Sophia N. Karagiannis, Debra H. Josephs, Heather J Bax Therapeutic IgE Antibodies: Harnessing a Macrophage-Mediated Immune Surveillance Mechanism against Cancer Cancer Res. 2017 Jun 1; 77 (11):2779-2783.

27. Giulia Pellizzari Coran Hoskin Silvia Crescioli Silvia Mele Jelena IgE re-programs alternatively-activated human macrophages towardspro-inflammatory antitumoural states EBioMedicine 43 (2019) 67–81.

28. Josephs D.H.; Bax H.J.; Dodev T.; et al. Anti-Folate Receptor-α IgE but not IgG Recruits Macrophages to Attack Tumors via TNFα/MCP-1 Signaling. Cancer Res. 2017, 77, 1127–1141.

29. Pellizzari G.; Hoskin C.; Crescioli S.; et al. IgE re-programs alternatively-activated human macrophages towards pro-inflammatory anti-tumoural states. EBioMedicine 2019, 43, 67–81.

30. Nakamura M.; Souri E.A.; Osborn G.; et al. IgE Activates Monocytes from Cancer Patients to Acquire a Pro-Inflammatory Phenotype. Cancers 2020, 12, 3376.

31. Alex J. McCraw et al Insights from IgE Immune Surveillance in Allergy and Cancer for Anti-Tumour IgE Treatments Cancers 2021, 13 (17), 4460.

32. Olteanu H.; Fenske T.S.; Harrington, A.M. CD23 expression in follicular lymphoma: Clinicopathologic correlations. Am. J. Clin. Pathol. 2011, 135, 46–53.

33. Linderoth J.; Jerkeman M.; Cavallin-Ståhl, Immunohistochemical expression of CD23 and CD40 may identify prognostically favorable subgroups of diffuse large B-cell lymphoma: A Nordic Lymphoma Group Study. Clin. Cancer Res. 2003, 9, 722–728.

34. Ye Z.S., Fan L.N., Wang L., Immunoglobulin E induces colon cancer cell apoptosis via enhancing cyp27b1 expression. Am. J. Transl. Res. 2016, 8, 5715–5722.

35. Van Hemelrijck M., Garmo H., Binda E., Immunoglobulin E and cancer: A meta-analysis and a large Swedish cohort study. Cancer Causes Control. 2010, 21, 1657–1667.

36. Wulaningsih W., Holmberg L., Investigating the association between allergen-specific immunoglobulin E, cancer risk and survival. Oncoimmunology 2016, 5.

37. Kozłowska R.; Bożek A.; Jarząb J. Association between cancer and allergies. Allergy Asthma Clin. Immunol. 2016, 12, 39.

38. Matta G.M.; Battaglio S.; Dibello C.; Polyclonal immunoglobulin E levels are correlated with hemoglobin values and overall survival in patients with multiple myeloma. Clin. Cancer Res. 2007, 13, 5348–5354.

39. Wrensch M.; Wiencke J.K.; Wiemels J.; et al. Serum IgE, tumor epidermal growth factor receptor expression, and inherited polymorphisms associated with glioma survival. Cancer Res. 2006, 66, 4531 – 4541.

40. Nigro E.A.; Brini A.T.; Yenagi, et al. Cutting Edge: IgE Plays an Active Role in Tumor Immunosurveillance in Mice. J. Immunol. 2016, 197, 2583–2588.

41. Schlehofer B.; Siegmund B.; Linseisen J.; et al. Primary brain tumours and specific serum immunoglobulin E: A case-control study nested in the European Prospective Investigation into Cancer and Nutrition cohort. Allergy 2011, 66, 1434–1441.

42. Ferastraoaru D.; Rosenstreich D. IgE deficiency and prior diagnosis of malignancy: Results of the 2005–2006 National Health and Nutrition Examination Survey. Ann. Allergy Asthma Immunol. 2018, 121, 613–618.

43. Ferastraoaru D.; Rosenstreich D. IgE deficiency is associated with high rates of new malignancies: Results of a longitudinal cohort study. J. Allergy Clin. Immunol. Pract. 2020, 8, 413–415.

44. Ferastraoaru D.; Schwartz D.; Rosenstreich D. Increased Malignancy Rate in Children with IgE Deficiency: A Single-center Experience. J. Pediatr. Hematol. Oncol. 2021, 43, e472–e477.

45. Josephs D.H., Bax H.J., Dodev T., Georgouli M., et al. Anti-Folate receptor-α IgE but not IgG recruits macrophages to attack Tumors viaTNFα/MCP-1 Signaling. Cancer Res 2017 Mar 1;77(5):1127–41.

46. Karagiannis S.N., Josephs D.H., Bax H.J., Spicer J.F. Therapeutic IgE antibodies: harnessing a macrophagemediated immune surveillance mechanism against cancer. Cancer Res 2017;77(11):2779–2783.

47. Josephs D.H., Nakamura M., Bax H.J., et al. An immunologically relevant rodent model demonstrates safety of therapy using a tumourspecific IgE. Allergy 2018 Dec;73(12):2328–41.

48. Karagiannis S.N., Wang Q., East N., Burke F., et al. Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells. Eur J Immunol 2003 Apr; 33 (4):1030–40.

49. Giulia Pellizzari, Coran Hoskin, Silvia Crescioli IgE re-programs alternatively-activated human macrophages towards pro-inflammatory anti-tumoural states EBioMedicine 43 (2019) 67–81.

50. Jensen-Jarolim E., Bax H.J., Bianchini R., Capron M., et al. Allergo Oncology - the impact of allergy in oncology: EAACI position paper. Allergy 2017 Jun;72 (6):866–87.

51. Daniels T.R., Leuchter R.K., Quintero R., et al. Targeting HER2/neu with a fully human IgE to harness the allergic reaction against cancer cells. Cancer Immunol Immunother 2012 Jul 30; 61 (7): 991–1003.

52. Lewis C.E., Pollard J.W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006; 66 (2):605–612.

53. Chanmee T., Ontong P., Konno K., Itano N. Tumorassociated macrophages as major players in the tumor microenvironment. Cancers (Basel). 2014; 6(3):1670–12.

54. Ruffell B., Coussens L.M. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015; 27(4):462–472.

55. Pollard J.W. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4 (1):71–78.

56. Lin A.A., Freeman AF, Nutman TB. IL-10 indirectly downregulates IL-4-induced IgE production by human B cells. Immunohorizons. 2018; 2 (11):398–406.

57. Jeannin P., Lecoanet S., Delneste Y., Gauchat J.F., Bonnefoy J.Y. IgE versus IgG4 production can be differentially regulated by IL-10. J Immunol. 1998; 160.

58. Nirula A., Glaser S.M., Kalled S.L., Taylor F.R. What is IgG4? A review of the biology of a unique immunoglobulin subtype. Curr Opin Rheumatol. 2011; 23 (1): 119–124.

59. Galateja Jordakieva, Rodolfo Bianchini, Daniel Reichhold. IgG4 induces tolerogenic M2-like macrophages and correlates with disease progression in colon cancer. Oncoimmunology. 2021; 10 (1): 87.

60. Caturegli P., Kuppers R.C., Mariotti S., Burek C.L., Pinchera A., Ladenson P.W., Rose N.R. IgG subclass distribution of thyroglobulin antibodies in patients with thyroid disease. Clin Exp Immunol. 1994; 98 (3):464–469.

61. Lucas S.D., Karlsson-Parra A., Nilsson B., Grimelius L., Akerstrom G., Rastad J., Juhlin C. Tumorspecific deposition of immunoglobulin G and complement in papillary thyroid carcinoma. Hum Pathol. 1996; 27(12):1329–1335.

62. Karagiannis P., Gilbert A.E., Josephs D.H., Ali N., Dodev T., Saul L., Correa I., Roberts L., Beddowes E., Koers A., et al. IgG4 subclass antibodies impair antitumor immunity in melanoma. J Clin Invest. 2013;123(4):1457–1474.

63. Kamisawa T., Chen P.Y., Tu Y., Nakajima H., Egawa N., Tsuruta K., Okamoto A., Hishima T. Pancreatic cancer with a high serum IgG4 concentration. World J Gastroenterol. 2006;12 (38): 6225 - 6228.

64. Miyatani K., Saito H., Murakami Y., Watanabe J., Kuroda H., Matsunaga T., Fukumoto Y., Osaki T., Nakayama Y., Umekita Y., et al. A high number of IgG4-positive cells in gastric cancer tissue is associated with tumor progression and poor prognosis. Virchows Arch. 2016; 468 (5): 549–557.

65. Mitsias D.I., Xepapadaki P., Makris M., Papadopoulos N.G. Immunotherapy in allergic diseases - improved understanding and innovation for enhanced effectiveness. Curr Opin Immunol. 2020; 66:1–8.

66. Jensen-Jarolim E., Mechtcheriakova D., Pali-Schoell I. The targets of IgE: allergen-associated and tumor-associated molecular patterns. Penichet ML, Jensen-Jarolim E. editors,Cancer and IgE: introducing the concept of allegro Oncology. Totowa (NJ): Humana Press; 2010; 231–254.

67. Pellizzari G., Hoskin C., Crescioli S., Mele S., Gotovina J., Chiaruttini G., Bianchini R., Ilieva K., Bax H.J., Papa S., et al. IgE re-programs alternatively-activated human macrophages towards pro-inflammatory antitumoural states. EBioMedicine. 2019; 43:67–81.

68. Nakamura M., Souri E.A., Osborn G., Laddach R., Chauhan J., Stavraka C., Lombardi S., Black A., Khiabany A., Khair D.O., et al. IgE activates monocytes from cancer patients to acquire a pro-inflammatory phenotype. Cancers (Basel). 2020; 12:11.

69. Chanmee T., Ontong P., Konno K., Itano N. Tumorassociated macrophages as major players in the tumor icroenvironment. Cancers (Basel) 2014; 6:1670–1690.

70. Богданова И.М. и др. Ключевая роль опухоль-ассоциированных макрофагов в прогрессировании и метастазировании опухолей Иммунология. Том 40. № 4. 2019, 41-47.

71. Laviron M., Boissonnas A. Ontogeny of tumorassociated macrophages // Front. Immunol. – 2019. – V. 10. – Art. 1799, P. 1–7.

72. Nishikawa H., Sakaguchi S. Regulatory T cells in tumor immunity // Int. J. Cancer. – 2010. – V. 127, No 4. – P. 759–767.

73. Chulpanova D.S., Kitaeva K.V., Green A.R., Rizvanov A.A., Solovyeva V.V. Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy // Front. Cell Dev. Biol. – 2020. – V. 8. – Art. 402, P. 1–24.

74. Zhang L., Zhao Y. The regulation of Foxp3 expression in regulatory CD4(+) CD 25(+) T cells: multiple pathways on the road. J. Cell. Physiol. 2007; 211 (3): 590–597.

75. Horne Z.D., Jack R., Gray Z.T., Siegfried J.M., Wilson D.O. et al. Increased levels of tumor-infiltrating lymphocytes are associated with improved recurrence-free survival in stage 1A non-small-cell lung cancer. J. Surg Res. 2011 Nov; 171 (1):1–5.

76. Свиридова В.С., Климов В.В., Денисов А.А. Иммунорегуляторные субпопуляции Т-клеток при опухолевом росте и аллергических заболеваниях сибирский онкологический журнал. 2010. №3 (39), 38-47.

77. Жулай Г.А., Олейник Е.К. Регуляторные T-клетки и канцерогенез Иммунология № 1, 2013, 61-64

78. Смирнов Д.С. Роль изоформ молекулы Foxp3. В регуляции воспаления при поллинозе и прогнозе эффективности аллерген-специфической иммунотерапии Диссертация на соискание ученой степени кандидата медицинских наук Москва, 2020 г.

79. Loureiro G., Tavares B., Chieira C. et all. Effect of dermatophagoides specific immunotherapy on cutaneous reactivity // Eur Ann Allergy Clin Immunol. – 2007. - №39. – р. 5-8.

80. Maneechotesuwan K., Xin Y., Ito K. Et al. Regulation of Thе 2 cytokine genes by p38 MAPKmediated phosphorylation of GATA-3 // J. Immunol. - 2007.- Vol. 178. - Iss. 4. - P. 2491–2498.

81. Lorenzo G., Mansueto P., Pacor M.L. et all. Evaluation of serum sIgE/total IgE ratio in Predicting clinical response to allergen-specific immunotherapy // J Allergy Clin Immunol. – 2009. – v.123. - №5. – р. 1103- 1110.

82. Пичужкина О.В., Гущин И.С., Курбачева О.М. Реаранжировка иммунного ответа в результате проведения аллерген-специфической иммунотерапии Иммунология. – 2013. - №1. - C. 43-48.

83. Селютин А.В., Сельков С.А. Методы определения содержания Т- регуляторных клеток в периферической крови. Лаб. Диагностика. – 2008. - № 4. – C.19 - 21.

84. Ling E.M., Smith T., Nguyen X.D. et al. Relation of CD4_CD25_ regulatory T-cell suppression of allergendriven T-cell activation to atopic status and expression of allergic disease // Lancet. 2004. Vol. 363. P. 608 – 615.

85. Пономарев А.В. Миелоидные супрессорные клетки: общая характеристика. Immunology. 2016; 37 (1).

86. Yuhui Yang, Chunyan Li, Tao Liu Front. Myeloid-Derived Suppressor Cells in Tumors: From Mechanisms to Antigen Specificity and Microenvironmental Regulation. Immunol., 22 July 2020. 371.

87. Fei Xue, Mengzhu Yu, Li. Li. Elevated granulocytic myeloid-derived suppressor cells are closely related with elevation of Th17 cells in mice with experimental asthma Int J Biol Sci 2020; 16 (12):2072-2083).

88. Jake N. Lichterman, Sangeetha M. Reddy Mast Cells: A New Frontier for Cancer Immunotherapy Cells 2021, 10 (6), 1270.

89. Valent P., Akin C., Hartmann K., Nilsson G., Reiter A., Hermine O., Sotlar, K.; Sperr, W.R.; Escribano, L.; George, T.I.; et al. Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich’s visions to precision medicine concepts. Theranostics 2020, 10, 10743–10768.

90. Turner H.; Kinet J.P. Signalling through the highaffinity IgE receptor FcεRI. Nature 1999, 402, B24–B30.

91. Oldford S.A.; Marshall J.S. Mast cells as targets for immunotherapy of solid tumors. Mol. Immunol. 2015, 63, 113–124.

92. Wang B., Li L., Liao, Y.; Li, J.; Yu, X.; Zhang, Y.; Xu, J.; Rao, H.; Chen, S.; Zhang, L.; et al. Mast cells expressing interleukin 17 in the muscularis propria predict a favorable prognosis in esophageal squamous cell carcinoma. Cancer Immunol. Immunother. 2013, 62, 1575–1585.

93. Sammarco G., Varricchi G., Ferraro V., Ammendola M., De Fazio M., Altomare D.F., Luposella M., Maltese L., Curro G., Marone G., et al. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int. J. Mol. Sci. 2019, 20, 2106.

94. Takanami I., Takeuchi K., Naruke M. Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer 2000, 88, 2686–2692

95. Theoharides T.C., Conti P. Mast cells: The Jekyll and Hyde of tumor growth. Trends Immunol. 2004, 25, 235–241.

96. Dery R.E., Lin T.J., Befus A.D., Milne C.D., Moqbel R., Menard G., Bissonnette E.Y. Redundancy or cell-type-specific regulation? Tumour necrosis factor in alveolar macrophages and mast cells. Immunology 2000, 99, 427–434.

97. Wang X., Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin. 2008, 29, 1275–1288.

98. Martinel Lamas D.J., Nicoud M.B., Sterle H.A., Cremaschi G.A., Medina V.A. Histamine: A potential cytoprotective agent to improve cancer therapy? Cell Death Dis. 2015, 6.

99. Chen J., Hu X.Y. Inhibition of histamine receptor H3R suppresses prostate cancer growth, invasion and increases apoptosis via the AR pathway. Oncol. Lett. 2018, 16, 4921–4928.

100. Vosskuhl K., Greten T.F., Manns M.P., Korangy F., Wedemeyer J. Lipopolysaccharide-mediated mast cell activation induces IFN-gamma secretion by NK cells. J. Immunol. 2010, 185, 119–125.


Рецензия

Для цитирования:


Кузьмин Ю.А. АЛЛЕРГИЯ И РАК. Актуальные проблемы теоретической и клинической медицины. 2022;(1):10-22. https://doi.org/10.24412/2790-1289-2022-1-1022

For citation:


Kuzmin Yu.A. ALLERGY AND CANCER. Actual Problems of Theoretical and Clinical Medicine. 2022;(1):10-22. (In Russ.) https://doi.org/10.24412/2790-1289-2022-1-1022

Просмотров: 146


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2790-1289 (Print)
ISSN 2790-1297 (Online)