Патогенетические аспекты хронической сердечной недостаточности с сохраненной фракцией выброса
https://doi.org/10.24412/2790-1289-2024-1-35-42
Аннотация
Цель. Хроническая сердечная недостаточность представляет собой один из наиболее часто встречающихся синдромов сердечно-сосудистой системы, влияющий на функцию и анатомию сердца. На сегодняшний день в здравоохранении проблема высокой распространенности хронической сердечной недостаточности с сохраненной фракцией выброса играет существенную роль в летальности пациентов. Высокий риск осложнений, нарушение жизненно важных функций организма неизбежно снижают качество жизни пациентов. В связи с проблемой высокой распространенности хронической сердечной недостаточности мы проанализировали литературные источники по данной теме.
Методы. В статье по данным обзора литературы представлены данные о патогенетических аспектах хронической сердечной недостаточности с сохраненной фракцией выброса.
Результаты. Доказана роль следующих факторов: диастолическая дисфункция, миокардиальный фиброз, оксидативный стресс и воспаление, эндотелиальная дисфункция и т.д.
Выводы. Патогенез хронической сердечной недостаточности с сохраненной фракцией выброса многогранен, включает в себя множество составляющих. Сердца пациентов с хронической
сердечной недостаточности с сохраненной фракцией выброса претерпевают гипертрофическую форму ремоделирования и у большинства пациентов с хронической сердечной недостаточности с
сохраненной фракцией выброса есть признаки диастолической дисфункции. Изучение патогенетических механизмов развития хронической сердечной недостаточности с сохраненной фракцией
выброса может помочь в дальнейшем поиске новых терапевтических стратегий.
Об авторах
М. К. ТундыбаеваКазахстан
Тундыбаева Мейрамгуль Капсиметқызы – д.м.н., ассоц.профессор,
г. Алматы.
Г. Қ. Төлеш
Казахстан
Төлеш Гүлзина Қызырқызы – магистрант 2 года обучения,
г. Алматы.
Список литературы
1. Ponikowski P., Voors A. A., Anker S. D. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC). Developed with the special contribution of the heart failure Association (HFA) of the ESC // European Journal of Heart Failure. – 2016. – Vol. 18(8). – P. 891-975.
2. Ge J. (2020). Coding proposal on phenotyping heart failure with preserved ejection fraction: a practical tool for facilitating etiology-oriented therapy // Cardiology Journal. – Vol. 27(1). – P. 97-8.
3. Pieske B., Tschöpe C., de Boer R. A. et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC) // European Journal of Heart Failure. – 2020. – Vol. 22(3). – P. 391-412.
4. Borlaug B. A., Paulus, W. J. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment // European Heart Journal. – 2011. – Vol. 32(6). – P. 670-679. – DOI: http://dx.doi.org/10.1093/eurheartj/ehq426.
5. Borlaug B. A. The pathophysiology of heart failure with preserved ejection fraction // Nature Reviews Cardiology. – 2014. – Vol. 11(9). – P. 507-515.
6. Sorop O., Heinonen I., van Kranenburg M., van de Wouw J., de Beer V. J., Nguyen ITN., Octavia Y., van Duin RWB., Stam K., van Geuns R. J., Wielopolski P. A., Krestin G. P., van den Meiracker A. H., Verjans R., van Bilsen M., Danser AHJ., Paulus W. J, Cheng C., Linke W. A., Joles J. A., Verhaar M. C., van der Velden J., Merkus D. and Duncker D. J. Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening // Cardiovascular Research Journal. – 2018. – Vol. 114(7). – P. 954-964.
7. Zile M. R., Baicu C. F., Ikonomidis J. S., Stroud R. E., Nietert P. J., Bradshaw A. D., Slater R., Palmer B. M., Van Buren P., Meyer M., Redfield M. M., Bull D. A., Granzier H. L. and LeWinter M. M. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin // Circulation. – 2015. – Vol. 131(14). – Р. 1247-1259. – DOI: 10.1161/CIRCU-LATIONAHA. (Дата обращения: 07.04.2015).
8. Lewis G. A., Rosala-Hallas A., Dodd S., Schelbert E. B., Williams S. G., Cunnington C., McDonagh T., Miller C. A. Impact of Myocardial Fibrosis on Cardiovascular Structure, Function and Function-al Status in Heart Failure with Preserved Ejection Fraction // Journal of Cardiovascular Translational Research. – 2022. – Vol.15(6). – Р. 1436-1443. – DOI: 10.1007/s12265-022-10264-7.
9. Singleton M. J., Nelson M. B., Samuel T. J., Kitzman D. W., Brubaker P., Haykowsky M. J., Upadhya B., Chen H., Nelson M. D. Left Atrial Stiffness Index Independently Predicts Exercise Intolerance and Quality of Life in Older, Obese Patients With Heart Failure With Preserved Ejection Fraction // Journal of Cardiac Failure. – 2022. – Vol. 28(4). – Р. 567-575.
10. Gan GCH., Ferkh A., Boyd A., Thomas L. Left atrial function: evaluation by strain analysis // Cardiovascular Diagnosis and Therapy. – 2018. – Vol. 8(1). – Р. 29-46.
11. Franssen C., Chen S., Hamdani N., Paulus W. J. From comorbidities to heart failure with preserved ejection fraction: a story of oxidative stress // Heart. – 2016. – Vol. 102. – Р. 320–330.
12. Aimo A., Castiglione V., Borrelli C., SaccaroL. F., Franzini M., Masi S., Emdin M., Giannoni A. Oxidative stress and inflammation in the evolution of heart failure: from pathophysiology to therapeutic strategies // European journal of preventive cardiology. – 2020. – Vol. 27. – Р. 494–510.
13. Packer, M. Derangements in adrenergic–adipokine signalling establish a neurohormonal basis for obesity-related heart failure with a preserved ejection fraction // European journal of heart failure. – 2018. – Vol. 20. – Р. 873–878.
14. Kumar A. A., Kelly D. P., Chirinos J. A. Mitochondrial dysfunction in heart failure with preserved ejection fraction // Circulation. – 2019. – Vol. 139. – Р. 1435–1450.
15. Melenovsky V., Hwang S-J., Redfield M. M., Zakeri R., Lin G., Borlaug B. A. Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction. // Circulation: Heart Failure. – 2015. – Vol. 8. – Р. 295–303.
16. Chen Y-T., Wong L. L., Liew O. W., Richards A. M. Heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF): the diagnostic value of circulating microRNAs // Cells. – 2019. – Vol. 8. – DOI: https://doi.org/10.3390/cells8121651.
17. Gevaert A. B., Boen J. R., Segers V. F., Van Craenenbroeck E. M. Heart failure with preserved ejection fraction: a review of cardiac and noncardiac pathophysiology // Frontiers in physiology. – 2019. – Vol. 10. – DOI: 10.3389/fphys.2019.00638.
18. Hahn V. S., Knutsdottir H., Luo X., Bedi K., Margulies K. B., Haldar S. M., Stolina M., Yin J., Khakoo A. Y., Vaishnav, J. Myocardial gene expression signatures in human heart failure with preserved ejection fraction // Circulation. – 2021. – Vol. 143. – Р. 120-134.
19. Lindman B. R., Dávila-Román V. G., Mann D. L., McNulty S., Semigran M. J., Lewis G. D., De Las Fuentes L., Joseph S. M., Vader J., Hernandez A. F. Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study // Journal of the American College of Cardiology. – 2014. – Vol. 64. – Р. 541-549.
20. Friebel J., Weithauser A., Witkowski M. et al. Protease-activated receptor 2 deficiency mediates cardiac fibrosis and diastolic dysfunction // European Heart Journal. – 2019. – Vol. 40(40). – Р. 3318-3332.
21. Rodriguez P., Sassi Y., Troncone L. et al. Deletion of delta-like 1 homologue accelerates fibroblast-myofibroblast differentiation and induces myocardial fibrosis // European Heart Journal. – 2019. – Vol. 40(12). – Р. 967-978.
22. Gaytan S. L., Beaven E., Gadad S. S., Nurunnabi M. Progress and prospect of nanotechnology for cardiac fibrosis treatment // Interdisciplinary Medical Journal. – 2023. – Vol. 1(4). – DOI: 10.1002/INMD.20230018.
23. Kanagala P., Arnold J. R., Singh A., Chan DCS., Cheng A. SH., Khan J. N., Gulsin G. S., Yang J., Zhao L., Gupta P., Squire I. B., Ng L. L., McCann G. P. Characterizing heart failure with preserved and reduced ejection fraction: An imaging and plasma biomarker approach // PLoS One. – 2020. – Vol. 15(4). – DOI: 10.1371/journal.pone.0232280.
24. Sweeney M., Corden B., Cook S. A. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle? // EMBO Molecular Medicine. – 2020. – Vol. 12(10). – DOI: 10.15252/emmm.201910865.
25. Zhou Y., Zhu Y., Zeng J. Research Update on the Pathophysiological Mechanisms of Heart Failure with Preserved Ejection Fraction // Current Molecular Medicine. – 2023. – Vol. 23(1). – Р. 54-62.
26. Michels da Silva D., Langer H., Graf T. Inflammatory and molecular pathways in heart failure-ischemia, HFpEF and transthyretin cardiac amyloidosis // International Journal of Molecular Sciences. – 2019. – Vol. 20(9). – DOI: 10.3390/ijms20092322.
27. Zhazykbayeva S., Pabel S., Mügge A., Sossalla S., Hamdani N. (). The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases // Biophysical reviews. – 2020. – Vol. 12(4). – Р. 947-968.
28. Gevaert A. B., Shakeri H., Leloup A. J. et al. Endothelial senescence contributes to heart failure with preserved ejection fraction in an aging mouse model // Circulatory Heart Failure. – 2017. – Vol. 10(6). – DOI: 10.1161/CIRCHEARTFAILURE.116.003806.
29. Paulus W. J., Dal Canto E. Distinct myocardial targets for diabetes therapy in heart failure with preserved or reduced ejection fraction // JACC Heart Failure. – 2018. – Vol. 6(1). – Р. 1-7.
30. Brandt M. M., Nguyen ITN., Krebber M. M. et al. Limited synergy of obesity and hypertension, prevalent risk factors in onset and progression of heart failure with preserved ejection fraction // Journal of Cellular and Molecular Medicine. – 2019. – Vol. 23(10). – Р. 6666-6678.
31. Waddingham M. T., Sonobe T., Tsuchimochi H. et al. Diastolic dysfunction is initiated by cardiomyocyte impairment ahead of endothelial dysfunction due to increased oxidative stress and inflammation in an experimental prediabetes model // Journal of Molecular and Cellular Cardiology. – 2019. – Vol. 137. – Р. 119-131.
32. Yamamoto E., Hirata Y., Tokitsu T. et al. The pivotal role of eNOS uncoupling in vascular endothelial dysfunction in patients with heart failure with preserved ejection fraction // International Journal of Cardiology. – 2015. – Vol. 190. – Р. 335-337.
33. Henning R. J. Diagnosis and treatment of heart failure with preserved left ventricular ejection fraction // World Journal of Cardiology. – 2020. – Vol. 12(1). – Р. 7-25. – DOI: 10.4330/wjc.v12.i1.7.
34. Shah S. J., Borlaug B. A., Kitzman D. W., McCulloch A. D., Blaxall B. C., Agarwal R., Chirinos J. A., Collins S., Deo R. C., Gladwin M. T., Granzier H., Hummel S. L., Kass D. A., Redfield M. M., Sam F., Wang T. J., Desvigne-Nickens P., Adhikari B. B. Research Priorities for Heart Failure With Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary // Circulation. – 2020. – Vol. 141(12). – Р. 1001-1026.
35. Obokata M., Reddy, YNV., Borlaug B. A. (). Diastolic Dysfunction and Heart Failure With Preserved Ejection Fraction: Understanding Mechanisms by Using Noninvasive Methods // JACC Cardiovascular Imaging. – 2020. – Vol. 13(1 Pt 2). – Р. 245-257.
36. Indorkar R., Kwong R. Y., Romano S. et al. Global Coronary Flow Reserve Measured During Stress Cardiac Magnetic Resonance Imaging Is an Independent Predictor of Adverse Cardiovascular Events // JACC Cardiovascular Imaging. – 2018. – Vol. 12(8 Pt 2). – Р. 1686-1695.
37. Freed B. H., Daruwalla V., Cheng J. Y. et al. Prognostic Utility and Clinical Significance of Cardiac Mechanics in Heart Failure With Preserved Ejection Fraction: Importance of Left Atrial Strain // Circulation-Cardiovascular Imaging. – 2016. – Vol. 9. DOI: 10.1161/CIRCIMAGING.115.003754.
38. Sarma S., Stoller D., Hendrix J. et al. Mechanisms of Chronotropic Incompetence in heart failure with preserved ejection fraction // Circulatory Heart Failure. – 2020. – Vol. 13(3). – DOI: 10.1161/CIRCHEARTFAILURE.119.006331.
39. Santos A. B., Kraigher-Krainer E., Gupta D. K. et al. Impaired left atrial function in heart failure with preserved ejection fraction // European Journal of Heart Failure. – 2014. – Vol. 16. – Р. 1096–1103.
40. Mohammed S. F., Borlaug B. A., McNulty S. et al. Resting ventricular-vascular function and exercise capacity in heart failure with preserved ejection fraction: a RELAX trial ancillary study // Circulation Heart Failure. – 2014. – Vol. 7. – Р. 580-589.
41. Sarma S., Howden E., Lawley J., Samels M. Levine B. D. Central command and the regulation of exercise heart rate response in heart failure with preserved ejection fraction // Circulation. – 2021. – Vol. 143(8). – Р. 783-789.
42. Hoeper, M. M., Lam, CSP., Vachiery, J. L. et al. (). Pulmonary hypertension in heart failure with preserved ejection fraction: a plea for proper phenotyping and further research // European Heart Journal. – 2017. – Vol. 38(38). – Р. 2869-2873.
43. Samson R, Jaiswal A, Ennezat P. V, Cassidy M. and Le Jemtel T. H. Clinical Phenotypes in Heart Failure With Preserved Ejection Fraction // Journal of the American Heart Association. – 2016. – Vol. 5(1). – DOI: 10.1161/JAHA.115.002477.
44. Santas E., Palau P., Guazzi M. et al. Usefulness of Right Ventricular to pulmonary circulation coupling as an indicator of risk for recurrent admissions in heart failure with preserved ejection fraction // American Journal of Cardiology. – 2019. – Vol. 124(4). – Р. 567-572.
45. Gerges M., Gerges C., Pistritto A-M. et al. Pulmonary hypertension in heart failure: Epidemiology, right ventricular function and survival // American Journal of Respiratory and Critical Care Medicine. – 2015. – Vol. 192. – Р. 1234-1246.
46. Shults N. V., Kanovka S. S., Ten Eyck J. E., Rybka V., Suzuki Y. J. Ultrastructural changes of the right ventricular myocytes in pulmonary arterial hypertension // Journal of the American Heart Association. – 2019. – Vol. 8(5). – DOI: 10.1161/JAHA.118.011227.
47. Ikonomidis I., Aboyans V., Blacher J. et al. The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European society of cardiology working group on aorta & peripheral vascular diseases, European association of cardiovascular imaging, and heart failure association // European Journal of Heart Failure. – 2019. – Vol. 21(4). – Р. 402-424.
48. Severino P., D'Amato A., Prosperi S., Fanisio F., Birtolo L. I., Costi B., Netti L., Chimenti C., Lavalle C., Maestrini V., Mancone M., Fedele F. Myocardial Tissue Characterization in Heart Failure with Preserved Ejection Fraction: From Histopathology and Cardiac Magnetic Resonance Findings to Therapeutic Targets // International Journal of Molecular Sciences. – 2021. – Vol. 22(14). – DOI: 10.3390/ijms22147650.
Рецензия
Для цитирования:
Тундыбаева М.К., Төлеш Г.Қ. Патогенетические аспекты хронической сердечной недостаточности с сохраненной фракцией выброса. Актуальные проблемы теоретической и клинической медицины. 2024;(1):44-56. https://doi.org/10.24412/2790-1289-2024-1-35-42
For citation:
Tundybayeva М.К., Tolesh G.К. Pathogenetic aspects of chronic heart failure with preserved ejection fraction. Actual Problems of Theoretical and Clinical Medicine. 2024;(1):44-56. (In Russ.) https://doi.org/10.24412/2790-1289-2024-1-35-42