Preview

Actual Problems of Theoretical and Clinical Medicine

Advanced search

Pathogenetic aspects of chronic heart failure with preserved ejection fraction

https://doi.org/10.24412/2790-1289-2024-1-35-42

Abstract

Purpose. Chronic heart failure (CHF) is one of the most common syndromes of the
cardiovascular system (CVS) that affects the function and anatomy of the heart. Currently, the issue of the high prevalence of chronic heart failure with preserved ejection fraction (HFpEF) plays a significant role in patient mortality in healthcare. The high risk of complications and disruption of vital functions
inevitably reduces the quality of life for patients. Due to the problem of the high prevalence of chronic heart failure, we analyzed the literature on this topic.
Methods. The article presents data on the pathogenetic aspects of HFpEF based on a literature review.
Results. The role of factors such as diastolic dysfunction, myocardial fibrosis, oxidative stress, inflammation, endothelial dysfunction, etc., has been proven.
Conclusions. Thus, the pathogenesis of HFpEF is multifaceted and includes many components.
The hearts of patients with HFpEF undergo hypertrophic remodeling, and most HFpEF patients exhibit signs of diastolic dysfunction. Studying the pathogenetic mechanisms of HFpEF development can help in the further search for new therapeutic strategies.

About the Authors

М. К. Tundybayeva
Kazakh-Russian Medical University
Kazakhstan

Almaty.



G. К. Tolesh
Kazakh-Russian Medical University
Kazakhstan

Almaty.



References

1. Ponikowski, P., Voors, A. A., Anker, S. D. et al. (2016). ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC). Developed with the special contribution of the heart failure Association (HFA) of the ESC. European Journal of Heart Failure, 18(8), 891-975.

2. Ge, J. (2020). Coding proposal on phenotyping heart failure with preserved ejection fraction: a practical tool for facilitating etiology-oriented therapy. Cardiology Journal, 27(1), 97-98.

3. Pieske, B., Tschöpe, C., de Boer, R. A. et al. (2020). How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). European Journal of Heart Failure, 22(3), 391-412.

4. Borlaug, B. A., Paulus, W. J. (2011). Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. European Heart Journal, 32(6), 670-679, DOI: http://dx.doi.org/10.1093/eurheartj/ehq426.

5. Borlaug, B. A. (2014). The pathophysiology of heart failure with preserved ejection fraction. Nature Reviews Cardiology, 11(9), 507-515.

6. Sorop, O., Heinonen, I., van Kranenburg, M., van de Wouw, J., de Beer, V. J., Nguyen, ITN., Octavia, Y., van Duin, RWB., Stam, K., van Geuns, R. J., Wielopolski, P. A., Krestin, G. P., van den Meiracker, A. H., Verjans, R., van Bilsen, M., Danser, AHJ., Paulus, W. J, Cheng, C., Linke, W. A., Joles, J. A., Verhaar, M. C., van der Velden, J., Merkus, D. and Duncker, D. J. (2018). Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovascular Research Journal, 114(7), 954-964.

7. Zile, M. R., Baicu, C. F., Ikonomidis, J. S., Stroud, R. E., Nietert, P. J., Bradshaw, A. D., Slater, R., Palmer, B. M., Van Buren, P., Meyer, M., Redfield, M. M., Bull, D. A., Granzier, H. L. and LeWinter, M. M. (2015). Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. Retrieved April 7, 2015, 131(14), 12471259, DOI: 10.1161/CIRCULATIONAHA.

8. Lewis, G. A., Rosala-Hallas, A., Dodd, S., Schelbert, E. B., Williams, S. G., Cunnington, C., McDonagh, T. and Miller, C. A. (2022). Impact of Myocardial Fibrosis on Cardiovascular Structure, Function and Functional Status in Heart Failure with Preserved Ejection Fraction. Journal of Cardiovascular Translational Research, 15(6), 14361443, DOI: 10.1007/s12265-022-10264-7.

9. Singleton, M. J., Nelson, M. B., Samuel, T. J., Kitzman, D. W., Brubaker, P., Haykowsky, M. J., Upadhya, B., Chen, H. and Nelson, M. D. (2022). Left Atrial Stiffness Index Independently Predicts Exercise Intolerance and Quality of Life in Older, Obese Patients With Heart Failure With Preserved Ejection Fraction. Journal of Cardiac Failure, 28(4), 567-575.

10. Gan, GCH., Ferkh, A., Boyd, A., and Thomas, L. (2018). Left atrial function: evaluation by strain analysis. Cardiovascular Diagnosis and Therapy, 8(1), 29-46.

11. Franssen, C., Chen, S., Hamdani, N. and Paulus,W. J. (2016). From comorbidities to heart failure with preserved ejection fraction: a story of oxidative stress. Heart,102, 320–330.

12. Aimo, A., Castiglione, V., Borrelli, C., Saccaro,L. F., Franzini, M., Masi, S., Emdin, M. and Giannoni, A. (2020). Oxidative stress and inflammation in the evolution of heart failure: from pathophysiology to therapeutic strategies. European journal of preventive cardiology, 27, 494–510

13. Packer, M. (2018). Derangements in adrenergic-adipokine signalling establish a neurohormonal basis for obesity-related heart failure with a preserved ejection fraction. European journal of heart failure, 20, 873-878.

14. Kumar, A. A., Kelly, D. P. and Chirinos, J. A. (2019). Mitochondrial dysfunction in heart failure with preserved ejection fraction. Circulation, 139, 1435-1450.

15. Melenovsky, V., Hwang, S-J., Redfield, M. M., Zakeri, R., Lin, G. and Borlaug, B. A. (2015). Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction. Circulation: Heart Failure, 8, 295-303.

16. Chen, Y-T., Wong, L. L., Liew, O. W. and Richards, A. M. (2019). Heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF): the diagnostic value of circulating microRNAs. Cells, 8, DOI: https://doi.org/10.3390/cells8121651.

17. Gevaert, A. B., Boen, J. R., Segers, V. F. and Van Craenenbroeck, E. M. (2019). Heart failure with preserved ejection fraction: a review of cardiac and noncardiac pathophysiology. Frontiers in physiology, 10, DOI: 10.3389/fphys.2019.00638.

18. Hahn, V. S., Knutsdottir, H., Luo, X., Bedi, K., Margulies, K. B., Haldar, S. M., Stolina, M., Yin, J., Khakoo, A. Y. and Vaishnav, J. (2021). Myocardial gene expression signatures in human heart failure with preserved ejection fraction. Circulation, 143,120-134.

19. Lindman, B. R., Dávila-Román, V. G., Mann, D. L., McNulty, S., Semigran, M. J., Lewis, G. D., De Las Fuentes, L., Joseph, S. M., Vader, J. and Hernandez, A. F. (2014). Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. Journal of the American College of Cardiology, 64, 541-549.

20. Friebel, J., Weithauser, A., Witkowski, M. etal. (2019). Protease-activated receptor 2 deficiency mediates cardiac fibrosis and diastolic dysfunction. European Heart Journal, 40(40), 3318-3332.

21. Rodriguez, P., Sassi, Y., Troncone, L. et al.(2019). Deletion of delta-like 1 homologue accelerates fibroblast-myofibroblast differentiation and induces myocardial fibrosis. European Heart Journal, 40(12), 967-978.

22. Gaytan, S. L., Beaven, E., Gadad, S. S. and Nurunnabi, M. (2023). Progress and prospect of nanotechnology for cardiac fibrosis treatment. Interdisciplinary Medical Journal, 1(4), DOI: 10.1002/INMD.20230018.

23. Kanagala, P., Arnold, J. R., Singh, A., Chan, DCS., Cheng, A. SH., Khan, J. N., Gulsin, G. S., Yang, J., Zhao, L., Gupta, P., Squire, I. B., Ng, L. L. and McCann, G. P. (2020). Characterizing heart failure with preserved and reduced ejection fraction: An imaging and plasma biomarker approach, PLoS One, 15(4), DOI: 10.1371/journal.pone.0232280.

24. Sweeney, M., Corden, B. and Cook, S. A. (2020). Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle? EMBO Molecular Medicine, 12(10), DOI: 10.15252/emmm.201910865.

25. Zhou, Y., Zhu, Y. and Zeng, J. (2023). Research Update on the Pathophysiological Mechanisms of Heart Failure with Preserved Ejection Fraction. Current Molecular Medicine, 23(1), 54-62.

26. Michels da Silva, D., Langer, H. and Graf, T. (2019). Inflammatory and molecular pathways in heart failure-ischemia, HFpEF and transthyretin cardiac amyloidosis. International Journal of Molecular Sciences, 20(9), DOI: 10.3390/ijms20092322.

27. Zhazykbayeva, S., Pabel, S., Mügge, A., Sossalla, S. and Hamdani, N. (2020). The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases. Biophysical reviews, 12(4), 947-968

28. Gevaert, A. B., Shakeri, H. and Leloup, A. J. (2017). et al. Endothelial senescence contributes to heart failure with preserved ejection fraction in an aging mouse model. Circulatory Heart Failure, 10(6), DOI: 10.1161/CIRCHEARTFAILURE.116.003806.

29. Paulus, W. J. and Dal Canto, E. (2018). Distinct myocardial targets for diabetes therapy in heart failure with preserved or reduced ejection fraction. JACC Heart Failure, 6(1), 1-7.

30. Brandt, M. M., Nguyen, ITN., Krebber, M. M. et al. (2019). Limited synergy of obesity and hypertension, prevalent risk factors in onset and progression of heart failure with preserved ejection fraction. Journal of Cellular and Molecular Medicine, 23(10), 6666-6678.

31. Waddingham, M. T., Sonobe, T., Tsuchimochi, H. et al. (2019). Diastolic dysfunction is initiated by cardiomyocyte impairment ahead of endothelial dysfunction due to increased oxidative stress and inflammation in an experimental prediabetes model. Journal of Molecular and Cellular Cardiology, 137, 119-131.

32. Yamamoto, E., Hirata, Y., Tokitsu, T. et al. (2015). The pivotal role of eNOS uncoupling in vascular endothelial dysfunction in patients with heart failure with preserved ejection fraction. International Journal of Cardiology, 190, 335-337.

33. Henning, R. J. (2020). Diagnosis and treatment of heart failure with preserved left ventricular ejection fraction. World Journal of Cardiology, 12(1), 7-25. DOI: 10.4330/wjc.v12.i1.7.

34. Shah, S. J., Borlaug, B. A., Kitzman, D. W., McCulloch, A. D., Blaxall, B. C., Agarwal, R., Chirinos, J. A., Collins, S., Deo, R. C., Gladwin, M. T., Granzier, H., Hummel, S. L., Kass, D. A., Redfield, M. M., Sam, F., Wang, T. J., Desvigne-Nickens, P. and Adhikari, B. B. (2020). Research Priorities for Heart Failure With Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation, 141(12), 1001-1026.

35. Obokata, M., Reddy, YNV. and Borlaug, B. A. (2020). Diastolic Dysfunction and Heart Failure With Preserved Ejection Fraction: Understanding Mechanisms by Using Noninvasive Methods. JACC Cardiovascular Imaging, 13(1 Pt 2), 245257.

36. Indorkar, R., Kwong, R. Y., Romano, S. et al. (2018). Global Coronary Flow Reserve Measured During Stress Cardiac Magnetic Resonance Imaging Is an Independent Predictor of Adverse Cardiovascular Events. JACC Cardiovascular Imaging, 12(8 Pt 2), 1686-1695, DOI: 10.1016/j.jcmg.2018.08.018

37. Freed, B. H., Daruwalla, V., Cheng, J. Y. et al. (2016). Prognostic Utility and Clinical Significance of Cardiac Mechanics in Heart Failure With Preserved Ejection Fraction: Importance of Left Atrial Strain. Circulation-Cardiovascular Imaging, 9, DOI: 10.1161/CIRCIMAGING.115.003754.

38. Sarma, S., Stoller, D., Hendrix, J. et al. (2020). Mechanisms of Chronotropic Incompetence in heart failure with preserved ejection fraction. Circulatory Heart Failure, 13(3), DOI: 10.1161/CIRCHEARTFAILURE.119.006331.

39. Santos, A. B., Kraigher-Krainer, E., Gupta, D. K. et al. (2014). Impaired left atrial function in heart failure with preserved ejection fraction. European Journal of Heart Failure, 16, 1096-1103.

40. Mohammed, S. F., Borlaug, B. A., McNulty, S. et al. (2014). Resting ventricular-vascular function and exercise capacity in heart failure with preserved ejection fraction: a RELAX trial ancillary study. Circulation Heart Failure, 7, 580-589.

41. Sarma, S., Howden, E., Lawley, J., Samels, M. and Levine, B. D. (2021). Central command and the regulation of exercise heart rate response in heart failure with preserved ejection fraction. Circulation, 143(8), 783-789.

42. Hoeper, M. M., Lam, CSP., Vachiery, J. L. et al. (2017). Pulmonary hypertension in heart failure with preserved ejection fraction: a plea for proper phenotyping and further research. European Heart Journal, 38(38), 2869-2873.

43. Samson, R, Jaiswal A, Ennezat P. V, Cassidy M. and Le Jemtel T. H. (2016). Clinical Phenotypes in Heart Failure With Preserved Ejection Fraction. Journal of the American Heart Association, 5(1), DOI: 10.1161/JAHA.115.002477.

44. Santas, E., Palau, P., Guazzi, M. et al. (2019). Usefulness of Right Ventricular to pulmonary circulation coupling as an indicator of risk for recurrent admissions in heart failure with preserved ejection fraction. American Journal of Cardiology, 124(4), 567-572.

45. Gerges, M., Gerges, C., Pistritto, A-M. et al. (2015). Pulmonary hypertension in heart failure: Epidemiology, right ventricular function and survival. American Journal of Respiratory and Critical Care Medicine, 192, 1234-1246.

46. Shults, N. V., Kanovka, S. S., Ten Eyck, J. E., Rybka, V. and Suzuki, Y. J. (2019). Ultrastructural changes of the right ventricular myocytes in pulmonary arterial hypertension. Journal of the American Heart Association, 8(5), DOI: 10.1161/JAHA.118.011227.

47. Ikonomidis, I., Aboyans, V., Blacher, J. et al. (2019). The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European society of cardiology working group on aorta & peripheral vascular diseases, European association of cardiovascular imaging, and heart failure association. European Journal of Heart Failure, 21(4), 402-424.

48. Severino, P., D'Amato, A., Prosperi, S., Fanisio, F., Birtolo, L. I., Costi, B., Netti, L., Chimenti, C., Lavalle, C., Maestrini, V., Mancone, M. and Fedele, F. (2021). Myocardial Tissue Characterization in Heart Failure with Preserved Ejection Fraction: From Histopathology and Cardiac Magnetic Resonance Findings to Therapeutic Targets. International Journal of Molecular Sciences, 22(14), DOI: 10.3390/ijms22147650.


Review

For citations:


Tundybayeva М.К., Tolesh G.К. Pathogenetic aspects of chronic heart failure with preserved ejection fraction. Actual Problems of Theoretical and Clinical Medicine. 2024;(1):44-56. (In Russ.) https://doi.org/10.24412/2790-1289-2024-1-35-42

Views: 151


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2790-1289 (Print)
ISSN 2790-1297 (Online)