The evolution of prostate cancer diagnosis: from palpation to artificial intelligence
https://doi.org/10.24412/2790-1289-2025-2-125-143
Abstract
Being one of the most common types of cancer, prostate cancer requires a specific diagnostic approach, using modern, highly sensitive, and specific diagnostic methods. An analysis of existing methods will allow us to determine the most effective strategies for early detection and control of the disease.
The purpose of this study. To summarize existing data on the diagnostic algorithm for prostate cancer, identify the strengths and weaknesses of each of the procedures used, and evaluate the impact and effectiveness of modern diagnostic methods.
Methods and materials. Information was searched and analyzed in Google Scholar, PubMed, Elsevier, Web of Science, and Medline databases. The review includes data from meta-analyses, randomized controlled trials, systematic reviews, and clinical trials. Duplicate articles have been deleted, information verified, and irrelevant works excluded. As a result, 75 full-text documents and abstracts were selected, providing a comprehensive analysis of the problem under consideration.
Conclusion. Combined approaches increase the accuracy of pancreatic cancer diagnosis. PSMA-PET improves the detection of metastases, but remains expensive and difficult to access in developing countries. A liquid biopsy has potential, but requires improved sensitivity. Transrectal ultrasound examination remains an important tool, but its diagnostic value is limited. A magnetic resonance imaging-targeted biopsy reveals more clinically significant prostate cancer than a systematic biopsy. Artificial intelligence in diagnostics requires development, but its use should be regulated.
About the Authors
E. A. AkhmetovKazakhstan
Ermek A. Akhmetov – Ph.D, MD, Doctor of Medical Science, Associate Professor of Radiology
Astana
phone: +77789160020
M. A. Dzhakipov
Kazakhstan
Jakipov Murat Abdrakhmanovich – Head of the Radiation Diagnostics Department, Master of Business and Management
Astana
phone: +77018705767
B. A. Kochiyev
Kazakhstan
Kochiyev Bairam Alimoglu – radiologist (radiologist
Astana
рhone: +77024477266
K. A. Andreyeva
Kazakhstan
Andreyeva Xeniya Alekseyevna – resident-radiologist
Astana
phone: +77023865636
I. Sh. Sherullayev
Kazakhstan
Sherullayev Islam Sheryazdanovich – resident radiologist
Astana
рhone: +77471508980, +77788591873
Z. S. Makiejanova
Kazakhstan
Makiezhanova Zukhra Sairankyzy – resident radiologist
Astana
рhone: +77472507137
A. R. Amangazy
Kazakhstan
Amangazy Alua Ruslankyzy – resident radiologist
Astana
phone: +77078307103
A. K. Sarsenbayev
Kazakhstan
Sarsenbayev Alisher Kairatuly – resident radiologist
Astana
phone: +77751727118
A. S. Kabylbekova
Kazakhstan
Kabylbekova Aliya Serikovna – resident radiologist
Astana
phone: +77786026038
I. S. Berikbayev
Kazakhstan
Berikbayev Islambek Sáttigululy – resident radiologist
Astana
рhone: +7708-183-24-05
References
1. World Cancer Research Fund (2022). Prostate cancer statistics. World Cancer Research Fund. Retrieved December 4 , 2024, from https://www.wcrf.org/preventing-cancer/cancer-statistics/prostatecancer-statistics/#latest-prostate-cancer-data.
2. Chen, J., Zhang, D., Yan, W., Yang, D., & Shen, B. (2013). Translational bioinformatics for diagnostic and prognostic prediction of prostate cancer in the next-generation sequencing era. BioMed Research International, 2013, 901578. DOI: https://doi.org/10.1155/2013/901578.
3. Perdana, N. R., Mochtar, C. A., Umbas, R., & Hamid, A. R. (2016). The risk factors of prostate cancer and its prevention: A literature review. Acta Medica Indonesiana, 48(3), 228-238.
4. World Health Organization (2024). Global cancer burden growing amidst mounting need for services. Retrieved December 4, 2024, from https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services.
5. Rebello, R. J., Oing, C., Knudsen, K. E. et al. (2021). Prostate cancer. Nature Reviews Disease Primers, 7, 9. DOI: https://doi.org/10.1038/s41572-020-00243-0.
6. American Cancer Society (2024). Cancer facts & figures, 76 p.
7. O’Reilly, J. A., & O’Kennedy, R. J. (2017). Prostate cancer detection: Complexities and strategies. Cancer Treatment Journal, 2, 18-25.
8. Descotes, J. L. (2019). Diagnosis of prostate cancer. Asian Journal of Urology, 6(2), 129-136. DOI: https://doi.org/10.1016/j.ajur.2018.11.007.
9. Bhattacharya, I., Khandwala, Y. S., Vesal, S., et al. (2022). A review of artificial intelligence in prostate cancer detection on imaging. Therapeutic Advances in Urology, 14, 17562872221128791. DOI: https://doi.org/10.1177/17562872221128791.
10. Thompson, I. M., Pauler, D. K., Goodman, P. J., et al. (2004). Prevalence of prostate cancer among men with a prostate-specific antigen level of ≤4.0 ng per milliliter. New England Journal of Medicine, 350, 2239-2246.
11. Shinohara, K., Master, V. A., Chi, T., & Carroll, P. R. (2006). Prostate needle biopsy techniques and interpretation. In Genitourinary Oncology. Philadelphia: Lippincott, Williams & Wilkins, 111-119.
12. Catalona, W. J. (2014). History of the discovery and clinical translation of prostate-specific antigen. Asian Journal of Urology, 1(1), 12-14.
13. Wilson, J. M. G., & Jungner, G. (1968). Principles and practice of screening for disease (Public Health Paper No. 34). World Health Organization, 164 p.
14. Thompson, I. M., & Ankerst, D. P. (2007). Prostate-specific antigen in the early detection of prostate cancer. CMAJ, 176(13), 1853-1858. DOI: https://doi.org/10.1503/cmaj.060955.
15. Pushkar', D. Ju., Bormotin, A. V., Govorov, A. V. Algoritm rannej diagnostiki raka predstatel'noj zhelezy. Semashko Moscow State Medical University. Retrieved December 6, 2024, from https://www.rmj.ru/articles/urologiya/Algoritm_ranney_diagnostiki_raka_predstatelynoy_ghelezy/. (In Russian).
16. Oesterling, J. E., Jacobsen, S. J., & Cooner, W. H. (1995). The use of age-specific reference ranges for serum prostate-specific antigen in men 60 years old or older. Journal of Urology, 153, 1160-1163.
17. Van Poppel, H., Albreht, T., Basu, P., Hogenhout, R., Collen, S., & Roobol, M. (2022). Serum PSA-based early detection of prostate cancer in Europe and globally: Past, present and future. Nature Reviews Urology. Retrieved December 7, 2024, from https://www.nature.com/articles/s41585-022-00638-6.
18. Sandhu, G. S., & Andriole, G. L. (2012). Overdiagnosis of prostate cancer. Journal of the National Cancer Institute Monographs. Retrieved December 7, 2024, from https://pmc.ncbi.nlm.nih.gov/articles/PMC3540879/.
19. Lopes, P. M., Sepúlveda, L., Ramos, R., & Sousa, P. (2015). The role of transrectal ultrasound in the diagnosis of prostate cancer: New contributions. Radiologia Brasileira, 48(1), 7-11. DOI: https://doi.org/10.1590/0100-3984.2013.0010.
20. Ozah, E., & Imasogie, D. E. (2023). The diagnostic accuracy of prostate-specific antigen and digital rectal examination in the diagnosis of prostate cancer at the University of Benin Teaching Hospital. Journal of the West African College of Surgeons, 13(3), 91-95. DOI: https://doi.org/10.4103/jwas.jwas_32_23.
21. Abdrabo, A. A., Fadlalla, A. I., & Fadl-Elmula, I. M. (2011). Significance of serum total prostatespecific antigen and digital rectal examination in the diagnosis of prostate cancer. Saudi Medical Journal, 32(11), 1133-1136.
22. Yusim, I., Krenawi, M., Mazor, E., et al. (2020). The use of prostate-specific antigen density to predict clinically significant prostate cancer. Scientific Reports, 10(1), 20015. DOI: https://doi.org/10.1038/s41598-020-76786-9.
23. Youn, S. Y., Choi, M. H., Lee, Y. J., et al. (2023). Prostate gland volume estimation: Anteroposterior diameters measured on axial versus sagittal ultrasonography and magnetic resonance images. Ultrasonography, 42(1), 154-164. DOI: https://doi.org/10.14366/usg.22104.
24. Wang, S., Kozarek, J., Russell, R., et al. (2024). Diagnostic performance of prostate-specific antigen density for detecting clinically significant prostate cancer in the era of magnetic resonance imaging: A systematic review and meta-analysis. European Urology Oncology, 7(2), 189-203. DOI: https://doi.org/10.1016/j.euo.2023.08.002.
25. Teoh, M. M., Nyandoro, M. G., Jacob, A., & Cooke, D. (2023). Digital rectal examination: A missed opportunity with fatal consequences. ANZ Journal of Surgery, 93, 775-776. DOI: https://doi.org/10.1111/ans.18025.
26. Hodge, K. K., McNeal, J. E., Terris, M. K., & Stamey, T. A. (1989). Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. Journal of Urology, 142(1), 71-74.
27. Norberg, M., Egevad, L., Holmberg, L., Sparén, P., Norlén, B. J., & Busch, C. (1997). The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology, 50(4), 562-566.
28. Gravestock, P., Shaw, M., Veeratterapillay, R., & Heer, R. (2022). Prostate cancer diagnosis: Biopsy approaches. In Urologic Cancers. Brisbane: Exon Publications. DOI: https://doi.org/10.36255/exon-publications-urologic-cancers-prostate-cancer-biopsy.
29. Hansen, N. L., Barrett, T., Lloyd, T., Warren, A., Samel, C., Bratt, O., & Kastner, C. (2020). Optimising the number of cores for magnetic resonance imaging-guided targeted and systematic transperineal prostate biopsy. BJU International, 125(2), 260–269. https://doi.org/10.1111/bju.14865
30. Chopra, S., Foltz, W. D., Milosevic, M. F., et al. (2009). Comparing oxygen-sensitive MRI (BOLD R2*) with oxygen electrode measurements: A pilot study in men with prostate cancer. International Journal of Radiation Biology, 85, 805-813.
31. Rzhevskiy, A. S., Kapitannikova, A. Y., Vasilescu, S. A., et al. (2022). Isolation of circulating tumor cells from seminal fluid of patients with prostate cancer using inertial microfluidics. Cancers (Basel), 14(14), Article 3364. DOI: https://doi.org/10.3390/cancers14143364.
32. Alahdal, M., Perera, R. A., Moschovas, M. C., Patel, V., & Perera, R. J. (2023). Current advances of liquid biopsies in prostate cancer: Molecular biomarkers. Molecular Therapy Oncolytics, 30, 27-38. DOI: https://doi.org/10.1016/j.omto.2023.07.004.
33. Zhen, L., Liu, X., Yegang, C., et al. (2019). Accuracy of multiparametric magnetic resonance imaging for diagnosing prostate cancer: A systematic review and meta-analysis. BMC Cancer, 19, Article 1244. DOI: https://doi.org/10.1186/s12885-019-6434-9.
34. Martins, M., Regusci, S., Rohner, S., et al. (2021). The diagnostic accuracy of multiparametric MRI for detection and localization of prostate cancer depends on the affected region. BJUI Compass, 2(3), 178-187.
35. McNeal, J. E. (1981). The zonal anatomy of the prostate. The Prostate, 2, 35-49.
36. Ahmed, H. U., Bosaily, A. E., Brown, L. C., et al. (2017). Diagnostic accuracy of multiparametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. The Lancet, 389(10071), 815-822.
37. Kasivisvanathan, V., Rannikko, A. S., Borghi, M., et al. (2018). MRI-targeted or standard biopsy for prostate cancer diagnosis. New England Journal of Medicine, 378(19), 1767-1777.
38. Schieda, N., Nisha, Y., Hadziomerovic, A. R., et al. (2024). Comparison of positive predictive values of biparametric MRI and multiparametric MRI–directed transrectal US–guided targeted prostate biopsy. Radiology, 311(3), Article 231383. DOI: https://doi.org/10.1148/radiol.231383.
39. Abramson, M., DeMasi, M., Zhu, D., et al. (2024). Biparametric versus multiparametric MRI for the detection of clinically significant prostate cancer in a diverse, multiethnic population. Abdominal Radiology, 49, 2491-2498. DOI: https://doi.org/10.1007/s00261-024-04332-6.
40. Gevorkjan, A. R., Molodcov, M. S., & Aleksandrov, E. V. (2023). Diagnostika raka predstatel'noj zhelezy v ramkah vysokotehnologichnoj specializirovannoj poliklinicheskoj medicinskoj pomoshhi. Bulletin of Urology, 11(1), 26-33. DOI: https://doi.org/10.21886/2308-6424-2023-11-1-26-33. (In Russian).
41. Standard Operating Procedure for Multiparametric Magnetic Resonance Imaging in the Diagnosis, Staging and Management of Prostate Cancer [Electronic source] // American Urological Association. Retrieved January 14, 2025, from https:// www.auanet.org.
42. Turkbey, B., Rosenkrantz, A. B., Haider, M. A., et al. (2019). Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. European Urology, 76(3), 340-351. DOI: https://doi.org/10.1016/j.eururo.2019.02.033.
43. Önder, Ö., Ayva, M., Yaraşır, Y., et al. (2024). Long-term follow-up results of multiparametric prostate MRI and the prognostic value of PI-RADS: A single-center retrospective cohort study. Diagnostic and Interventional Radiology, 30(3), 139- 151. DOI: https://doi.org/10.4274/dir.2023.232414.
44. Kim, J. Y., Kim, S. H., Kim, Y. H., Lee, H. J., Kim, M. J., & Choi, M. S. (2014). Low-risk prostate cancer: The accuracy of multiparametric MR imaging for detection. Radiology, 271(2), 435-444.
45. Lopes, P. M., Sepúlveda, L., Ramos, R., & Sousa, P. (2015). The role of transrectal ultrasound in the diagnosis of prostate cancer: New contributions. Radiologia Brasileira, 48(1), 7-11.
46. Moe, A., & Hayne, D. (2020). Transrectal ultrasound biopsy of the prostate: Does it still have a role in prostate cancer diagnosis? Translational Andrology and Urology, 9(6), 3017-3025.
47. Vesal, S., Bhattacharya, I., Jahanandish, H., et al. (2023). ProsDectNet: Bridging the gap in prostate cancer detection via transrectal B-mode ultrasound imaging [Electronic source]. arXiv. Retrieved January 15, 2025 from https://arxiv.org/abs/2312.05334.
48. Chen, F. K., de Castro Abreu, A. L., & Palmer, S. L. (2016). Utility of ultrasound in the diagnosis, treatment, and follow-up of prostate cancer: State of the art. Journal of Nuclear Medicine, 57(3), 13-18.
49. Zukov, R. A., Vjaz’min, V. V., & Chanchikova, N. G. (2022). Diagnosticheskie vozmozhnosti PJeT/KT s 18F-PSMA u pacientov s podozreniem na rak predstatel'noj zhelezy. Effective pharmacotherapy, 18(13), 6-10
50. Leen, E., Averkiou, M., Arditi, M., et al. (2012). Dynamic contrast-enhanced ultrasound assessment of the vascular effects of novel therapeutics in early-stage trials. European Radiology, 22, 1442-1450.
51. Jansen, B. H. E., van Leeuwen, P. J., Wondergem, M., et al. (2021). Detection of recurrent prostate cancer using prostate-specific membrane antigen positron emission tomography in patients not meeting the Phoenix criteria for biochemical recurrence after curative radiotherapy. European Urology Oncology, 4(5), 821-825. DOI: https://doi.org/10.1016/j.euo.2020.01.002.
52. Cornford, P., van den Bergh, R. C. N., Briers, E., et al. (2017). EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of relapsing, metastatic, and castration-resistant prostate cancer. European Urology, 71(4), 630-642.
53. Koo, P. J., & Petrylak, D. (2021). Novel imaging strategies for prostate cancer. Future Oncology, 17(27), 3545-3548. DOI: https://doi.org/10.2217/fon-2021-0629.
54. Crawford, E. D., Koo, P. J., Shore, N., et al. (2019). A clinician’s guide to next-generation imaging in patients with advanced prostate cancer (RADAR III). Journal of Urology, 201(4), 682-692
55. Calais, J., Ceci, F., Eiber, M., Hope, T. A., Hofman, M. S., Rischpler, C., Bach-Gansmo, T., Nanni, C., Savir-Baruch, B., Elashoff, D., Grogan, T., Dahlbom, M., Slavik, R., Gartmann, J., Nguyen, K., Lok, V., Jadvar, H., Kishan, A. U., Rettig, M. B., Reiter, R. E., Fendler, W. P., & Czernin, J. (2019). 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: A prospective, singlecentre, single-arm, comparative imaging trial. Lancet Oncology, 20(9), 1286-1294. DOI: https://doi.org/10.1016/S1470-2045(19)30415-2. Errata: Lancet Oncology. (2019). 20(11), e613. DOI: https://doi.org/10.1016/S1470-2045(19)30593-5; Lancet Oncology. (2020). 21(6), e304. DOI: https://doi.org/10.1016/S1470-2045(20)30279-5.
56. Ghai, S., & Haider, M. A. (2015). Multiparametric-MRI in diagnosis of prostate cancer. Indian Journal of Urology, 31(3), 194-201. DOI: https://doi.org/10.4103/0970-1591.159606.
57. Evangelista, L., Zattoni, F., Cassarino, G., et al. (2021). PET/MRI in prostate cancer: A systematic review and meta-analysis. European Journal of Nuclear Medicine and Molecular Imaging, 48(3), 859-873. DOI: https://doi.org/10.1007/s00259-020-05025-0.
58. Jannusch, K., Bruckmann, N. M., Morawitz, J., et al. (2024). Recurrent prostate cancer: Combined role for MRI and PSMA-PET in 68Ga-PSMA-11 PET/MRI. European Radiology, 34(7), 4789-4800. DOI: https://doi.org/10.1007/s00330-023-10442-4.
59. Liu, F. Y., Sheng, T. W., Tseng, J. R., et al. (2022). Prostate-specific membrane antigen (PSMA) fusion imaging in prostate cancer: PET-CT vs PET-MRI. British Journal of Radiology, 95(1131), 20210728. DOI: https://doi.org/10.1259/bjr.20210728.
60. Gammel, M. C. M., Solari, E. L., Eiber, M., et al. (2024). A clinical role of PET-MRI in prostate cancer? Seminars in Nuclear Medicine, 54(1), 132-140. DOI: https://doi.org/10.1053/j.semnuclmed.2023.08.001.
61. Alarcón-Zendejas, A. P., Scavuzzo, A., Jiménez-Ríos, M. A., et al. (2022). The promising role of new molecular biomarkers in prostate cancer: From coding and non-coding genes to artificial intelligence approaches. Prostate Cancer and Prostatic Diseases, 25, 431-443. DOI: https://doi.org/10.1038/s41391-022-00537-2.
62. Porzycki, P., & Ciszkowicz, E. (2020). Modern biomarkers in prostate cancer diagnosis. Central European Journal of Urology, 73(3), 300-306. DOI: https://doi.org/10.5173/ceju.2020.0067R.
63. Jansen, F. H., van Schaik, R. H., Kurstjens, J., et al. (2010). Prostate-specific antigen (PSA) isoform p2PSA in combination with total PSA and free PSA improves diagnostic accuracy in prostate cancer detection. European Urology, 57, 921-927.
64. Loeb, S., Sanda, M. G., Broyles, D. L., et al. (2015). The Prostate Health Index selectively identifies clinically significant prostate cancer. Journal of Urology, 193, 1163-1169. DOI: https://doi.org/10.1016/j.juro.2014.10.121.
65. Agbetuyi-Tayo, P., Gbadebo, M., Rotimi, O. A., & Rotimi, S. O. (2024). Advancements in biomarkers of prostate cancer: A review. Technology in Cancer Research & Treatment, 23. DOI: https://doi.org/10.1177/15330338241290029.
66. Talley, N., & O’Connor, S. (2022). The gastrointestinal examination. In Talley & O’Connor’s Clinical Examination: A Systematic Guide to Physical Diagnosis 1, 235-278.
67. Pfister, R., de Bruin, E. D., Sterrenburg, M. D., et al. (2018). Manual muscle testing and hand-held dynamometry in people with inflammatory myopathy: An intra- and interrater reliability and validity study. PLoS One, 13(3), e0194531. DOI: https://doi.org/10.1371/journal.pone.0194531.
68. Chen, J.-Y., Wang, P.-Y., Liu, M.-Z., et al. (2023). Biomarkers for prostate cancer: From diagnosis to treatment. Diagnostics, 13, 3350. DOI: https://doi.org/10.3390/diagnostics13213350.
69. Scovell, J. M., Carroll, P. R., Klein, E. A., Nguyen, H. G., & Jones, J. S. (2022). IsoPSA® reduces provider recommendations for biopsy and magnetic resonance imaging in men with total prostate-specific antigen ≥ 4 ng/ml: A real-world observational clinical utility study. Urology Practice, 9(2), 173-180. DOI: https://doi.org/10.1097/UPJ.0000000000000291.
70. Klein, E. A., Partin, A., Lotan, Y., et al. (2022). Clinical validation of IsoPSA, a single parameter, structure-focused assay for improved detection of prostate cancer: A prospective, multicenter study. Urologic Oncology, 40(9), 408.e9-408.e18. DOI: https://doi.org/10.1016/j.urolonc.2022.06.002.
71. Kennedy, A., & Hafron, J. (2024). Incorporation of IsoPSA into clinical practice in the management of elevated prostate-specific antigen based on current guidelines. Reviews in Urology, 23(3), 63-70.
72. Chang, E. K., Gadzinski, A. J., & Nyame, Y. A. (2021). Blood and urine biomarkers in prostate cancer: Are we ready for reflex testing in men with an elevated prostate-specific antigen? Asian Journal of Urology, 8, 343-353.
73. Agbetuyi-Tayo, P., Gbadebo, M., Rotimi, O. A., & Rotimi, S. O. (2024). Advancements in biomarkers of prostate cancer: A review. Technology in Cancer Research & Treatment, 23. DOI: https://doi.org/10.1177/15330338241290029.
74. Alarcón-Zendejas, A. P., Scavuzzo, A., Jiménez-Ríos, M. A., et al. (2022). The promising role of new molecular biomarkers in prostate cancer: From coding and non-coding genes to artificial intelligence approaches. Prostate Cancer and Prostatic Diseases, 25, 431-443. DOI: https://doi.org/10.1038/s41391-022-00537-2.
75. UCLA Biomedical AI Research Lab. (2025). AI tool detects prostate cancer more accurately than doctors. UCLA Biomedical AI Research Lab [Website]. Retrieved January 22, 2025, from https://bair. seas.ucla.edu.
76. Pellicer-Valero, O. J., Marenco Jiménez, J. L., Gonzalez-Perez, V., et al. (2022). Deep learning for fully automatic detection, segmentation, and Gleason grade estimation of prostate cancer in multiparametric magnetic resonance images. arXiv. DOI: https://doi.org/10.48550/arXiv.2103.12650.
Review
For citations:
Akhmetov E.A., Dzhakipov M.A., Kochiyev B.A., Andreyeva K.A., Sherullayev I.Sh., Makiejanova Z.S., Amangazy A.R., Sarsenbayev A.K., Kabylbekova A.S., Berikbayev I.S. The evolution of prostate cancer diagnosis: from palpation to artificial intelligence. Actual Problems of Theoretical and Clinical Medicine. 2025;(2):125-143. https://doi.org/10.24412/2790-1289-2025-2-125-143