Preview

Actual Problems of Theoretical and Clinical Medicine

Advanced search

Autonomic regulation disorders in elderly patients with arterial hypertension and post-covid syndrome

https://doi.org/10.24412/2790-1289-2025-2-35-56

Abstract

Post-COVID syndrome in elderly patients with arterial hypertension remains insufficiently studied, particularly in terms of autonomic dysfunction. The systemic effects of SARS-CoV-2 and its influence on cardiovascular regulation make the identification of such disorders a relevant issue in modern medicine.

Objective of the Study. To investigate autonomic nervous system dysfunction in elderly patients with arterial hypertension and post-COVID syndrome.

Materials and мethods. As part of outpatient follow-up at the clinical bases of the Kazakhstan Russian Medical University, a study was conducted to assess autonomic dysfunction in elderly patients with arterial hypertension and post-COVID syndrome. The examination included interviews, physical examinations, and assessment using Wayne’s scale, and heart rate variability analysis using the «CardioVisor» module. Time and frequency domain parameters were evaluated: SDNN, rMSSD, pNN50, LF, HF, LF/HF, the stress index, and the regulatory systems activity index.

Results. The study included 141 patients divided into two groups. The mean age in the main group was 70.81 ± 5.36 years, compared to 74.00 ± 6.06 years in the control group (p = 0.003). The proportion of patients aged 60-74 years was higher in the main group (p = 0.006). Grade 1 arterial hypertension was more common in patients with post-COVID syndrome, while grades 2 and 3 were more frequent in the control group (p = 0.042). Patients with post-COVID syndrome more often reported fatigue (38.36 %), anxiety (19.18 %), memory impairment (21.92 %), and excessive sweating (26.03 %) (p ≤ 0.001). According to the Wayne scale, respiratory symptoms were more prevalent during emotional stress (p = 0.014). Among heart rate variability indicators, a significant difference was observed in the LF/HF ratio (1.8 vs 1.5; p = 0.049).

Conclusion. In elderly patients with arterial hypertension, post-COVID syndrome is accompanied by characteristic complaints and signs of autonomic dysfunction, highlighting the need for further investigation into its impact on chronic conditions.

About the Authors

T. A. Tastaibek
NEI «Kazakhstan-Russian Medical University»
Kazakhstan

Tastaibek Timur Amanzholuly – 2nd-year master’s student, department of general medical practice

Almaty



M. A. Kostousova
NEI «Kazakhstan-Russian Medical University»
Kazakhstan

Kostousova Maria Alekseevna – 2nd-year master’s student, department of general medical practice

Almaty



V. Z. Kudabaeva
NEI «Kazakhstan-Russian Medical University»
Kazakhstan

Kudabaeva Venera Zhanarbekovna – 3rd-year doctoral student, department of general medical practice

Almaty



A. T. Mansharipova
NEI «Kazakhstan-Russian Medical University»
Kazakhstan

Mansharipova Almagul Tuleuovna – doctor of medical sciences, professor, department of general medical practice

Almaty



M. K. Adiyeva
NEI «Kazakhstan-Russian Medical University»
Kazakhstan

Adiyeva Madina Kuanganovna – PhD, head of the department of general medical practice

Almaty



References

1. Klinicheskoe opredelenie sluchaya sostoyaniya posle COVID-19 metodom Del'fiyskogo konsensusa (2021). WHO [Website]. Retrieved February 24, 2021, from https://iris.who.int/bitstream/handle/10665/345824/WHO-2019-nCoV-Post-COVID-19-condition-Clinical-case-definition-2021.1-rus.pdf.

2. Ministerstvo zdravookhraneniya Respubliki Kazakhstan. Sostoyanie posle COVID-19 (postkovidnyy sindrom) u vzroslykh: klinicheskiy protokol. Medelement [Website]. Retrieved February 24, 2023, from https://diseases.medelement.com/disease/sostoyanie-posle-covid-19-postkovidnyy-sindrom-u-vzroslykh-kp-rk-2023/17532. (In Russian).

3. Pazukhina, E., Garcia-Gallo, E., Reyes, L. F., Kildal, A. B., Jassat, W., Dryden, M., Holter, J. C., Chatterjee, A., Gomez, K., Søraas, A., Puntoni, M., Latronico, N., Bozza, F. A., Edelstein, M., Gonçalves, B. P., Kartsonaki, C., Kruglova, O., Gaião, S., Chow, Y. P., Doshi, Y., et al. (2024). Long Covid: A global health issue – A prospective, cohort study set in four continents. BMJ Global Health, 9(10), e015245. DOI: https://doi.org/10.1136/bmjgh-2024-015245

4. Mancia, G., Kreutz, R., Brunström, M., Burnier, M., Grassi, G., Januszewicz, A., Muiesan, M. L., Tsioufis, K., Agabiti-Rosei, E., Algharably, E. A. E., Azizi, M., Benetos, A., Borghi, C., Hitij, J. B., Cifkova, R., Coca, A., Cornelissen, V., Cruickshank, J. K., Cunha, P. G., Danser, A. H. J., et al. (2023). 2023 ESH guidelines for the management of arterial hypertension. Journal of Hypertension, 41(12), 1874-2071. DOI: https://doi.org/10.1097/HJH.0000000000003480

5. Akimova, A. V., Andreev, A. N., Mironov, V. A., & Milashchenko, A. I. (2018). Autonomic dysfunction and undifferentiated connective tissue dysplasia. NDT Days, 1(2), 263-266.

6. The Society for Cardiological Science and Technology (2024). Clinical guidelines by consensus: Recording a standard 12-lead electrocardiogram (Version 5). SCST Standards Committee.

7. Martinez, P., Grinand, M., Cheggour, S., Taieb, J., & Gourjon, G. (2024). How to properly evaluate cardiac vagal tone in oncology studies: A stateof-the-art review. Journal of the National Cancer Center, 4(1), 36-46. DOI: https://doi.org/10.1016/j.jncc.2024.02.002

8. Nayak, S. K., Pradhan, B., Mohanty, B., Sivaraman, J., Ray, S. S., Wawrzyniak, J., Jarzębski, M., & Pal, K. (2023). A review of methods and applications for a heart rate variability analysis. Algorithms, 16(9), 433. DOI: https://doi.org/10.3390/a16090433

9. Tiwari, R., Kumar, R., Malik, S., Raj, T., & Kumar, P. (2021). Analysis of heart rate variability and implication of different factors on heart rate variability. Current Cardiology Reviews, 17(5), 160721189770. DOI: https://doi.org/10.2174/1573403X16999201231203854

10. Pham, T., Lau, Z. J., Chen, S. H. A., & Makowski, D. (2021). Heart rate variability in psychology: A review of HRV indices and an analysis tutorial. Sensors (Basel), 21(12), 3998. DOI: https://doi.org/10.3390/s21123998

11. Karemaker, J. M. (2020). Interpretation of heart rate variability: The art of looking through a keyhole. Frontiers in Neuroscience, 14, 609570. DOI: https://doi.org/10.3389/fnins.2020.609570

12. Torres, R. E., Heileson, J. L., Richardson, K. A., Chapman-Lopez, T. J., Funderburk, L. K., & Forsse, J. S. (2023). The effectiveness of utilizing HRV indices as a predictor of ACFT performance outcomes. Military Medicine, 188(7-8), 2096-2101. DOI: https://doi.org/10.1093/milmed/usad009

13. Ali, M. K., Liu, L., Chen, J. H., & Huizinga, J. D. (2021). Optimizing autonomic function analysis via heart rate variability associated with motor activity of the human colon. Frontiers in Physiology, 12, 619722. DOI: https://doi.org/10.3389/fphys.2021.619722

14. Orini, M., van Duijvenboden, S., Young, W. J., Ramírez, J., Jones, A. R., Hughes, A. D., Tinker, A., Munroe, P. B., & Lambiase, P. D. (2023). Long-term association of ultra-short heart rate variability with cardiovascular events. Scientific Reports, 13(1), 18966. DOI: https://doi.org/10.1038/s41598-023-45988-2

15. Yugar, L. B. T., Yugar-Toledo, J. C., Dinamarco, N., Sedenho-Prado, L. G., Moreno, B. V. D., Rubio, T. A., Fattori, A., Rodrigues, B., Vilela-Martin, J. F., & Moreno, H. (2023). The role of heart rate variability (HRV) in different hypertensive syndromes. Diagnostics, 13(4), 785. DOI: https://doi.org/10.3390/diagnostics13040785

16. Novikov, A. A., Smolensky, A. V., & Mikhaylova, A. V. (2023). Approaches to the assessment of heart rate variability indicators: A literature review. Herald of New Medical Technologies. Electronic Edition, 17(3), 85-94. DOI: https://doi.org/10.24412/2075-4094-2023-3-3-3.

17. Zvereva, M. V., Matveev, Y. A., & Iskakova, Zh. T. (2020). Features of heart rate variability of students in the process of their adaptation to new conditions of educational activity. Vestnik of the Moscow City University. Series: Natural Sciences, 3(39), 8-17.

18. Venera, K., Mansharipova, A., & Bolsyn, A. (2025). Initial experience with deprescribing in physically active older adults with post-COVID syndrome in Kazakhstan: A cohort study investigating transition to simplified treatment regimen. Bangladesh Journal of Medical Science, 24(1), 155-163. DOI: https://doi.org/10.3329/bjms.v24i1.78729

19. Tsampasian, V., Elghazaly, H., Chattopadhyay, R., et al. (2023). Risk factors associated with postCOVID-19 condition: A systematic review and meta-analysis. JAMA Internal Medicine, 183(6), 566-580. DOI: https://doi.org/10.1001/jamainternmed.2023.0750

20. Zang, C., Hou, Y., Schenck, E. J. et al. (2024). Identification of risk factors of Long COVID and predictive modeling in the RECOVER EHR cohorts. Communications Medicine, 4(1), 130. DOI: https://doi.org/10.1038/s43856-024-00549-0.

21. Hejazian, S. S., Sadr, A. V., Shahjouei, S., et al. (2024). Prevalence and determinant of long-term post-COVID conditions among stroke survivors in the United States. Journal of Stroke and Cerebrovascular Diseases, 33(12), 108007. DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.108007.

22. Hu, W., Tang, R., Gong, S., et al. (2024). The prevalence and associated factors of post-COVID-19 fatigue: A systematic review and metaanalysis. Cureus, 16(7), e63656. DOI: https://doi.org/10.7759/cureus.63656.

23. Bonfim, L. P. F., Correa, T. R., Freire, B. C. C., et al. (2024). Post-COVID-19 cognitive symptoms in patients assisted by a teleassistance service: A retrospective cohort study. Frontiers in Public Health, 12, 1282067. DOI: https://doi.org/10.3389/fpubh.2024.128206.

24. D’Hondt, S., Gisle, L., De Pauw, R., et al. (2024). Anxiety and depression in people with post-COVID condition: A Belgian population-based cohort study three months after SARS-CoV-2 infection. Social Psychiatry and Psychiatric Epidemiology, 59(11), 2083-2092. DOI: https://doi.org/10.1007/s00127-024-02655-9.

25. Alkodaymi, M. S., Omrani, O. A., Ashraf, N., et al. (2022). Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: A systematic review and meta-analysis. Clinical Microbiology and Infection, 28(5), 657-666. DOI: https://doi.org/10.1016/j.cmi.2022.01.014.

26. Blackett, J. W., Li, J., Jodorkovsky, D., & Freedberg, D. E. (2022). Prevalence and risk factors for gastrointestinal symptoms after recovery from COVID-19. Neurogastroenterology and Motility, 34(3), e14251. DOI: https://doi.org/10.1111/nmo.14251.

27. Chinvararak, C., & Chalder, T. (2023). Prevalence of sleep disturbances in patients with long COVID assessed by standardised questionnaires and diagnostic criteria: A systematic review and meta-analysis. Journal of Psychosomatic Research, 175, 111535. DOI: https://doi.org/10.1016/j.jpsychores.2023.111535.

28. Schmidt-Lauber, C., Schmidt, E. A., Hänzelmann, S., et al. (2023). Increased blood pressure af-ter nonsevere COVID-19. Journal of Hypertension, 41(11), 1721-1729. DOI: https://doi.org/10.1097/HJH.0000000000003522.

29. Azami, P., Vafa, R. G., Heydarzadeh, R., et al. (2024). Evaluation of blood pressure variation in recovered COVID-19 patients at one-year followup: A retrospective cohort study. BMC Cardiovascular Disorders, 24(1), 240. DOI: https://doi.org/10.1186/s12872-024-03916-w.

30. Zhang, V., Fisher, M., Hou, W., et al. (2023). Incidence of new-onset hypertension post-COVID-19: Comparison with influenza. Hypertension, 80(10), 2135-2148. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.123.21174.

31. Larsen, N. W., Stiles, L. E., Shaik, R., et al. (2022). Characterization of autonomic symptom burden in long COVID: A global survey of 2,314 adults. Frontiers in Neurology, 13, 1012668. DOI: https://doi.org/10.3389/fneur.2022.1012668.

32. Eldokla, A. M., Mohamed-Hussein, A. A., Fouad, A. M., et al. (2022). Prevalence and patterns of symptoms of dysautonomia in patients with longCOVID syndrome: A cross-sectional study. Annals of Clinical and Translational Neurology, 9(6), 778- 785. DOI: https://doi.org/10.1002/acn3.51557.

33. Buoite Stella, A., Furlanis, G., Frezza, N. A., et al. (2022). Autonomic dysfunction in post-COVID patients with and without neurological symptoms: A prospective multidomain observational study. Journal of Neurology, 269(2), 587-596. DOI: https://doi.org/10.1007/s00415-021-10735-y.

34. Yar, T., Salem, A. M., Rafique, N., et al. (2024). Composite Autonomic Symptom Score-31 for the diagnosis of cardiovascular autonomic dysfunction in long-term coronavirus disease 2019. Journal of Family & Community Medicine, 31(3), 214-221. DOI: https://doi.org/10.4103/jfcm.jfcm2024.

35. Menezes Junior, A. D. S., Schröder, A. A., Botelho, S. M., & Resende, A. L. (2022). Cardiac autonomic function in long COVID-19 using heart rate variability: An observational cross-sectional study. Journal of Clinical Medicine, 12(1), 100. DOI: https://doi.org/10.3390/jcm12010100.

36. Levent, F., Tutuncu, A., & Ozmen, G. (2022). The effect of COVID-19 infection on heart rate variability: A cross-sectional study. International Journal of the Cardiovascular Academy, 8(3), 61- 66. DOI: https://doi.org/10.4103/ijca.ijca_9_22.

37. Oscoz-Ochandorena, S., Legarra-Gorgoñon, G., García-Alonso, Y., et al. (2024). Reduced autonomic function in patients with long-COVID-19 syndrome is mediated by cardiorespiratory fitness. Current Problems in Cardiology, 49(9), 102732. DOI: https://doi.org/10.1016/j.cpcardiol.2024.102732.


Supplementary files

Review

For citations:


Tastaibek T.A., Kostousova M.A., Kudabaeva V.Z., Mansharipova A.T., Adiyeva M.K. Autonomic regulation disorders in elderly patients with arterial hypertension and post-covid syndrome. Actual Problems of Theoretical and Clinical Medicine. 2025;(2):35-56. (In Russ.) https://doi.org/10.24412/2790-1289-2025-2-35-56

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2790-1289 (Print)
ISSN 2790-1297 (Online)