НАРУШЕНИЕ АКТИВНОСТИ НЕКОТОРЫХ СУБПОПУЛЯЦИЙ Т-КЛЕТОК ПРИ ТЯЖЕЛОМ ТЕЧЕНИИ COVID-19
https://doi.org/10.24412/2790-1289-2021-12125
Аннотация
COVID-19 является высокопатогенной вирусной инфекцией, вызываемой коронавирусом SARS-CoV-2. Изучение адаптивного иммунитета к SARS-CoV-2 важно для понимания патогенеза новой коронавирусной инфекции COVID-19, разработки вакцин и новых терапевтических подходов лечения. В данном обзоре рассматривается Т-клеточный иммунный ответ на SARS-CoV-2, а также активность Т-регуляторных клеток при COVID-19, опосредованные этими клетками иммунопатологические механизмы, участвующие в развитии заболевания и потенциальные новые терапевтические подходы
Об авторах
С. А. КанКазахстан
Е. О. Остапчук
Казахстан
Список литературы
1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019 // N. Engl. J. Med. - 2020. - №382. - С. 727 - 733.
2. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Hu Y., Tao Z.W., Tian J.H., Pei Y.Y., et al. A new coronavirus associated with human respiratory disease in China//Nature. - 2020. - №579 (7798). С. 265 - 269.
3. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin // Nature. - 2020. - № 579 (7798). - С. 270 - 273.
4. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS// J. Virol. - 2020. - №94. - С. 127-20.
5. Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses// Nat. Microbiol. - 2020. - С. 1 - 8.
6. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus//Nature. - 2003. № 426. - С. 450 – 454.
7. Kumar B.V., Connors T.J., Farber D.L. Human T Cell Development, Localization, and Function throughout Life// Immunity. - 2018. - № 48. - С. 202 - 13.
8. Grant E.J., Nüssing S., Sant S., Clemens E.B., Kedzierska K. The role of CD27 in anti-viral T-cell immunity// Curr Opin Virol. - 2017. - №22. - С.77 - 88.
9. Saeidi A., Zandi K., Cheok Y.Y., Saeidi H., Wong W.F., Lee CYQ, et al. Shankar E.M. T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses//Front Immunol. - 2018. - № 9. - С. 2569.
10. Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients // Cell Mol Immunol. - 2020. - №17. - С. 533 - 5.
11. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China // Clin Infect Dis. - 2020. - №71(15). - С. 762 - 8.
12. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China // Intens Care Med. - 2020. - № 22. - С. 77-88.
13. Cao X. COVID-19: immunopathology and its implications for therapy // Nat Rev Immunol. - 2020. - № 20. - С. 269 - 70.
14. Wing J.B., Tay C., Sakaguchi S. Control of regulatory T cells by co-signal molecules. In: Azuma M., Yagita H., editors // Advances in Experimental Medicine and Biology. - 2019. - vol. 1189. - p. 179 - 210.
15. Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019 // J Clin Invest. - 2020. - № 130. - С. 2620 - 9.
16. Wang F., Hou H., Luo Y., Tang G., Wu S., Huang M., et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness // JCI Insight. - 2020. - № 5. - С. 10.
17. Meckiff B.J. Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4+ T cells // SSRN. – 2020.
18. Belkaid Y., Tarbell K. Regulatory T cells in the control of host-microorganism interactions // Annu. Rev. Immunol. - 2009. - №27. - С. 551 - 589.
19. Suvas S. CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions // J. Immunol. - 2004. - №172. - С. 4123 - 4132.
20. Josefowicz S.Z., Lu L. - F., Rudensky A.Y. Regulatory T Cells: Mechanisms of Differentiation and Function// Annu. Rev. Immunol. - 2012. - №30. - С. 531 - 564.
21. Kalfaoglu B., Almeida-Santos J., Adele Tye C., Satou Y., Ono M. T-cell hyperactivation and paralysis in severe COVID - 19 infection revealed by single-cell analysis // Front Immunol. - 2020. - №11. - С. 589380.
22. Ono M., Tanaka R.J. Controversies concerning thymusderived regulatory T cells: Fundamental issues and a new perspective// Immunol. Cell Biol. -2016. - №94. - С. 3 - 10.
23. Valencia X., Stephens G., Goldbach-Mansky R., Wilson M., Shevach E.M., Lipsky P.E. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells // Blood. - 2006. - №108. - С. 253-261.
24. Nie H., Zheng Y., Li R., Guo T.B., He D., Fang L., Liu X., Xiao L., Chen X., Wan B., et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis//Nat. Med. - 2013. - №19. - С. 322 - 328.
25. D’Alessio F.R., Tsushima K., Aggarwal N.R., West E.E., Willett M.H., Britos M.F., Pipeling M.R., Brower R.G., Tuder R.M., McDyer J.F., et al. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury // J. Clin. Investig. - 2009. - №119. - С. 2898 - 2913.
26. Lyu M.A., Khoury J.D., Nishimoto M., Zeng K., Huang M., Iyer S.P., Parmar S. Single Injection of Cord Blood Regulatory T Cells Can Delay the Manifestations of Systemic Lupus Erythematosus // Blood. - 2019. - №134. - С. 1938.
27. Kadia T.M., Ma H., Zeng K., Nishimoto M., Lyu M.A., Huang M., Yilmaz M., DiNardo C.D., Issa G.C., Parmar S., et al. Phase I Clinical Trial of CK0801 (cord blood regulatory T cells) in Patients with Bone Marrow Failure Syndrome (BMF) Including Aplastic Anemia, Myelodysplasia and Myelofibrosis// Blood. - 2019. - №134. - С. 1221.
28. Gladstone D.E., Kim B.S., Mooney K., Karaba A.H., D’Alessio F.R. Regulatory T Cells for Treating Patients with COVID - 19 and Acute Respiratory Distress Syndrome: Two Case Reports // Ann. Intern. Med. - 2020. - V. 173. - P. 852- 853.
29. He R., Lu Z., Zhang L., Fan T., Xiong R., Shen X., Feng H., Meng H., Lin W., Jiang W., et al. The clinical course and its correlated immune status in COVID-19 pneumonia // J. Clin. Virol. - 2020. - №127. - С. 104361.
30. Sadeghi A., Tahmasebi S., Mahmood A., Kuznetsova M., Valizadeh H., Taghizadieh A., et al. Th17 and Treg cells function in SARS-CoV2 patients compared with healthy controls // J Cell Physiol. – 2020.
31. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., et al. Pathological findings of COVID‐19 associated with acute respiratory distress syndrome // Lancet Respir Med. - 2020. - №8. - С. 420‐422.
32. di Mauro G., Scavone C., Rafaniello C., Rossi F., Capuano A. SARS-CoV-2 infection: Response of human immune system and possible implications for the rapid test and treatment // Int Immunopharmacol. - 2020. - №84. - С. 106519.
33. Cafarotti S. Severe acute respiratory syndrome coronavirus 2 infection and patients with lung cancer: The potential role of interleukin - 17 target therapy // J Thorac Oncol. - 2020. - №15. - С. 101-103.
34. Wang W., Su B., Pang L., Qiao L., Feng Y., Ouyang Y., et al. High-dimensional immune profiling by mass cytometry revealed immunosuppression and dysfunction of immunity in COVID-19 patients // Cell Mol Immunol. - 2020. - №17. - С. 650-652.
35. Wang F., Nie J., Wang H., Zhao Q., Xiong Y., Deng L., et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia // J Infect Dis. - 2020 - №221.
36. Zheng H.Y., Zhang M., Yang C.X., Zhang N., Wang X.C., Yang X.P., et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID‐19 patients // Cell Mol Immunol. - 2020. - №17. - С. 541-543.
37. De Biasi S., Meschiari M., Gibellini L., Bellinazzi C., Borella R., Fidanza L., et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia// Nat Commun. - 2020. - №11. - С. 3434.
38. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. - 2020. - №395. - С. 497-506.
39. Wong C.K., Lam C.W.K., Wu A.K.L., Ip W.K., Lee N.L.S., Chan I.H.S., Lit L.C.W., Hui D.S.C., Chan M.H.M., Chung S.S.C., et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome // Clin. Exp. Immunol. - 2004. - №136. - С. 95-103.
40. Zhou Y., Fu B., Zheng X., Wang D., Zhao C., Qi Y., Sun R., Tian Z., Xu X., Wei H. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID - 19 patients // National Science Review. - 2020. - Vol. 7. - P. 998 - 1002
41. Guo C., Li B., Ma H., Wang X., Cai P., Yu Q., Zhu L., Jin L., Jiang C., Fang J., et al. Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm // Nat. Commun. - 2020. - №1. - С. 3924.
42. Parr J.B. Time to Reassess Tocilizumab’s Role in COVID-19 Pneumonia // AMA Intern Med. - 2021. - №181 (1). - С. 12-15.
43. Davis B.K., Wen H., Ting J.P.-Y. The Inflammasome NLRs in Immunity, Inflammation, and Associated Diseases // Annu. Rev. Immunol. - 2011. - №29. - С. 707–735.
44. Hou W., Jin Y.H., Kang H.S., Kim B.S. Interleukin-6 (IL-6) and IL-17 Synergistically Promote Viral Persistence by Inhibiting Cellular Apoptosis and Cytotoxic T Cell Function // J. Virol. - 2014. - №88. - С. 8479.
45. Crowe C.R., Chen K., Pociask D.A., Alcorn J.F., Krivich C., Enelow R.I., Ross T.M., Witztum J.L., Kolls J.K. Critical role of IL-17RA in immunopathology of influenza infection // J. Immunol. -2009. - №183. - С. 5301-5310.
46. Li C.K., Wu H., Yan H., Ma S., Wang L., Zhang M., Tang X., Temperton N.J., Weiss R.A., Brenchley J.M., et al. T cell responses to whole SARS coronavirus in humans// J. Immunol. - 2008. - №18. - С. 5490 - 5500.
47. Yang L.T., Peng H., Zhu Z.L., Li G., Huang Z.T., Zhao Z.X., Koup R.A., Bailer R.T., Wu C.Y. Long lived effector/ central memory T-cell responses to severe acute respiratory syndrome coronavirus (SARS-CoV) S antigen in recovered SARS patients // Clin. Immunol. - 2006. - №120. - С. 171 - 178.
48. Deming D., Sheahan T., Heise M., Yount B., Davis N., Sims A., Suthar M., Harkema J., Whitmore A., Pickles R., et al. Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants // PLOS Medicine. - 2020. - №4 (2).
49. Yasui F., Kai C., Kitabatake M., Inoue S., Yoneda M., Yokochi S., Kase R., Sekiguchi S., Morita K., Hishima T., et al. Prior Immunization with Severe Acute Respiratory Syndrome (SARS)-Associated Coronavirus (SARS-CoV) Nucleocapsid Protein Causes Severe Pneumonia in Mice Infected with SARS-CoV // J. Immunol. - 2008. - №181. - С. 6337.
Рецензия
Для цитирования:
Кан С.А., Остапчук Е.О. НАРУШЕНИЕ АКТИВНОСТИ НЕКОТОРЫХ СУБПОПУЛЯЦИЙ Т-КЛЕТОК ПРИ ТЯЖЕЛОМ ТЕЧЕНИИ COVID-19. Актуальные проблемы теоретической и клинической медицины. 2021;(1):21-26. https://doi.org/10.24412/2790-1289-2021-12125
For citation:
Kan S.A., Ostapchuk E.O. VIOLATION OF THE ACTIVITY OF CERTAIN T-CELL SUBPOPULATIONS IN SEVERE COVID-19. Actual Problems of Theoretical and Clinical Medicine. 2021;(1):21-26. https://doi.org/10.24412/2790-1289-2021-12125