Preview

Actual Problems of Theoretical and Clinical Medicine

Advanced search

CLINICAL PERSPECTIVES ON PHOTOPLETHYSMOGRAPHY IN IDENTIFYING THE RISK OF DEVELOPING CARDIOVASCULAR DISEASES

https://doi.org/10.64854/2790-1289-2025-50-4-09

Abstract

Introduction. This literature review focuses on modern methods for assessing cardiovascular risk using photoplethysmography and heart rate variability. Non-invasive approaches to assessing vascular wall health, arterial stiffness, heart rate, and microcirculation are discussed, along with their relationships with cardiovascular risk factors.

Objective: To analyze the potential of photoplethysmography as a non-invasive method for early detection of cardiovascular risk and to justify the need for its more widespread use in clinical practice.

Materials and methods: A search of international and domestic sources on methods for assessing heart rate variability and photoplethysmography was conducted across PubMed, Google Scholar, the Cochrane Library, Scopus Preview, eLibrary, and Cyberleninka databases. The search period was 10 years.

Results and discussion. The review revealed the potential of photoplethysmography and heart rate variability as informative digital markers that can reflect subclinical vascular changes and predict cardiovascular events. However, existing limitations are highlighted: the need for standardized signal recording protocols, variability in data quality, limited data on long-term clinical outcomes, and limited external validation of the models. The presented data support the need for further prospective studies, improved signal quality, the development of interpretable AI models, and the integration of photoplethysmography/heart rate variability with other biomarkers for a comprehensive assessment of cardiovascular health.

Conclusions. The literature review demonstrates that photoplethysmography is a promising, accessible, non-invasive method for early assessment of cardiovascular health. Photoplethysmography signal analysis allows for the detection of arterial stiffness, vascular tone, and other early subclinical changes associated with сardiovascular diseases risk. However, despite its high potential, the clinical application of this method is limited by the lack of standardized protocols, device heterogeneity, variability in data quality, insufficient clinical validation, and the predominance of cross-sectional studies without long-term outcomes.

About the Authors

B. А. Bugibayeva
Kazakhstan Medical University «KSPH»
Казахстан


А. S. Abzaliyeva
Al-Farabi Kazakh National University
Казахстан


B. К. Abzaliyev
Al-Farabi Kazakh National University
Казахстан


М. Т. Abdirova
Kazakhstan Medical University «KSPH»
Казахстан


U. М. Suleimenova
Al-Farabi Kazakh National University
Казахстан


A. M. Datkabayeva
Karaganda National Research University named after E.A. Buketov
Казахстан


References

1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E. (2019) Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol,76(25):2982-3021. doi: 10.1016/j.jacc.2020.11.010.

2. Preisner, K.; Hetjens, S. (2024) Risk Factors and Preventive Measures for Cardiovascular Diseases. J. Clin. Med., 13, 3308. https://doi.org/10.3390/jcm13113308

3. Karimpour, P.; May, J.M.; Kyriacou, P.A. (2023) Photoplethysmography for the Assessment of Arterial Stiffness. Sensors, 23, 9882. https://doi.org/10.3390/s23249882

4. Visseren F. L. J., Mach F., Smulders Y. M. et al. (2021) «2021 ESC Guidelines on cardiovascular disease prevention in clinical practice». European Heart Journal, 42(34): 3227-3337. DOI: 10.1093/eurheartj/ehab484.

5. Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258

6. Adriana Camargo Oliveira, Pedro Miguel Guimarães Marques Cunha. (2022) Vascular Aging and Arterial Stiffness. Arq Bras Cardiol, 119(4):604-615 DOI: https://doi.org/10.36660/abc.20210708

7. Global Burden of Cardiovascular Diseases and Risks 2023 Collaborators. (2024) Global, Regional, and National Burden of Cardiovascular Diseases and Risk Factors in 204 Countries and Territories, 1990-2023. J Am Coll Cardiol., S0735-1097(25)07428-5. doi: 10.1016/j.jacc.2025.08.015. Epub ahead of print. PMID: 40990886.

8. Ungvari Z, Tarantini S, Sorond F, Merkely B, Csiszar A. (2020) Mechanisms of Vascular Aging, A Geroscience Perspective: JACC Focus Seminar. J Am Coll Cardiol., 75(8):931-941. doi: 10.1016/j.jacc.2019.11.061. PMID: 32130929; PMCID: PMC8559983.

9. Aminuddin A, Rusanuar N.D, Md Risman Lazin Md Lazim, Ugusman A., Abd Rahman I.Z, Chellappan K, Mohamad M.S.F. (2025) Markers of Vascular Function and Future Coronary Artery Disease Risk Among Malaysians with Individual Cardiovascular Risk Factors. Biomedicines, 13, 899. https://doi.org/10.3390/biomedicines13040899

10. Marcinkevics, Z.; Aglinska, A.; Rubins, U.; Grabovskis, A. (2021) Remote Photoplethysmography for Evaluation of Cutaneous Sensory Nerve Fiber Function. Sensors , 21, 1272. https://doi.org/10.3390/s21041272.

11. Chatterjee S, Budidha K, Kyriacou PA. (2020) Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model. Physiol Meas., 4;41(8):084001. doi: 10.1088/1361-6579/aba008. PMID: 32585642.

12. Schäfer A, Vagedes J. (2013) How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int J Cardiol., 166(1):15-29. doi: 10.1016/j.ijcard.2012.03.119. Epub 2012 Jul 17. PMID: 22809539.

13. Selvaraj N, Jaryal A, Santhosh J, Deepak KK, Anand S. (2008) Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography. J Med Eng Technol., 32(6):479-84. doi: 10.1080/03091900701781317. PMID: 18663635.

14. Park J, Seok HS, Kim S-S and Shin H (2022) Photoplethysmogram Analysis and Applications: An Integrative Review. Front. Physiol. 12:808451. doi: 10.3389/fphys.2021.808451

15. Jayadevappa B. M., Holi M. S. (2016) Photoplethysmography: Design, Development, Analysis and Applications in Clinical and Physiological Measurement. A Review // International Journal of Innovative Research in Science, Engineering and Technology. Vol. 5, Issue 3. DOI: 10.15680/IJIRSET.2016.0503145.

16. Jermana L. Moraes ID, Matheus X. Rocha, Glauber G. Vasconcelos. (2018) Advances in Photopletysmography Signal Analysis for Biomedical Applications Sensors, 18, 1894; doi:10.3390/s18061894 www.mdpi.com/journal/sensors

17. Kiselev A.R., Karavaev A.S. (2020) The intensity of oscillations of the photoplethysmographic waveform variability at frequencies 0.04–0.4 Hz is effective marker of hypertension and coronary artery disease in males. Blood pressure, 29 (1): 55-62. https://doi.org/10.1080/08037051.2019.1645586

18. Weng WH, Baur S, Daswani M, Chen C, Harrell L, Kakarmath S, Jabara M, Behsaz B, McLean CY, Matias Y, Corrado GS, Shetty S, Prabhakara S, Liu Y, Danaei G, Ardila D. (2024) Predicting cardiovascular disease risk using photoplethysmography and deep learning. PLOS Glob Public Health., 4(6):e0003204. doi: 10.1371/journal.pgph.0003204. PMID: 38833495; PMCID: PMC11149850.

19. Kantrowitz AB, Ben-David K, Morris M, Wittels HL, Wishon MJ, McDonald SM, Renaghan EJ, Feigenbaum LA, Wittels SH. (2025) Pulse rate variability is not the same as heart rate variability: findings from a large, diverse clinical population study. Front Physiol., 16:1630032. doi: 10.3389/fphys.1630032. PMID: 40809286; PMCID: PMC12343505.

20. Tiwari R., Kumar R., Malik S., Raj T., Kumar P. et al. (2021) Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr Cardiol Rev. №17(5). Р. e160721189770. DOI: 10.2174/1573403X16999201231203854.

21. Natalia P. Podolyan a, Irina A. Mizeva Anzhelika V. Belaventseva. (2023) Imaging photoplethysmography quantifies endothelial dysfunction in patients with risk factors for cardiovascular complicationsю Biomedical Signal Processing and Control 86, Part A. - art.nmb. 105168

22. Маршутин Н.А. Вариабельность сердечного ритма у больных с хронической сердечной недостаточностью при изменении преднагрузки // Новая наука: Теоретический и практический взгляд. 2017. Т. 1. № 3. С. 5-8. https://cyberleninka.ru/article/n/variabelnost-serdechnogo-ritma-u-bolnyh-s-hronicheskoy-serdechnoy-nedostatochnostyu/viewer

23. Ikonomidis I, Makavos G, Lekakis J. (2015) Arterial stiffness and coronary artery disease. Curr Opin Cardiol., 30(4):422-31. doi: 10.1097/HCO.0000000000000179. PMID: 26049393.

24. Zekavat SM, Aragam K, Emdin C, Khera AV, Klarin D, Zhao H, Natarajan P. (2019) Genetic Association of Finger Photoplethysmography Derived Arterial Stiffness Index With Blood Pressure and Coronary Artery Disease. Arterioscler Thromb Vasc Biol.;39(6):1253-1261. doi: 10.1161/ATVBAHA.119.312626. PMID: 31070453; PMCID: PMC6531323.

25. Борисенко Т.Л. Клиническое значение нелинейных параметров вариабельности сердечного ритма у пациентов с сердечно-сосудистыми // Журнал Гродненского государственного медицинского университета. 2020. Т. 18. № 3. С. 223–229. DOI 10.25298/2221-8785-2020-18-3-223-229. EDN SVFQJI.

26. Blok S., Piek M. A., Tulevski I. I. (2021). The accuracy of heartbeat detection using photoplethysmography technology in cardiac patients. Journal of Electrocardiology, 67, 148–157. https://doi.org/10.1016/j.jelectrocard.2021.06.013

27. Mironov S.A., Kiselev A.R., Simonyan M.A., et al. (2019) Low-frequency skin microvascular oscillations: dynamics, synchronization and compliance with changes in vascular tone during the tilt test. Saratov Journal of Medical Scientific Research; 15 (3): 783–790.

28. Men L, Chen B, Yang L, Shi J, Tang S, Jiang X, Chen Y, Wang X, Fan P. (2025) Heart Rate Variability's Value in Predicting Out-of-Hospital Major Adverse Cardiovascular Events in Patients With Chronic Heart Failure. Cardiovasc Ther., 6412775. doi: 10.1155/cdr/6412775. PMID: 40852601; PMCID: PMC12370394.

29. Charlton PH, Allen J, Bailón R, Baker S, Behar JA, Chen F, et al. The 2023 wearable photoplethysmography roadmap. Physiol Meas., 44(11):111001. doi: 10.1088/1361-6579/acead2. PMID: 37494945; PMCID: PMC10686289.

30. Brozat M., Böckelmann I., Sammito S. (2025) Systematic Reviewon HRV Reference Values. J. Cardiovasc. Dev. Dis., 12, 214. https:// doi.org/10.3390/jcdd12060214

31. Con J. C., Lampi M. C., Reinhart-King C. A. (2015). Aging-induced vascular stiffening: Causes and consequences. Frontiers in Genetics, 6, 112.

32. https://doi.org/10.3389/fgene.2015.00112

33. Kim, K.B, Baek H.J. (2023) Photoplethysmography in Wearable Devices: A Comprehensive Review of Technological Advances, Current Challenges, and Future Directions. Electronics, 12, 2923.

34. Charlton, P. H., Paliakaitė, B., Pilt, K., Bachler, M., Zanelli, S., Kulin, D., Allen, J., Hallab, M., Bianchini, E., Mayer, C. C., Terentes-Printzios, D. (2022). Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: A review from VascAgeNet. American Journal of Physiology-Heart and Circulatory Physiology, 322(4), H493–H522. https://doi.org/10.1152/ajpheart.00392.2021

35. Vasan R.S., Pan S., Larson M.G., Mitchell G.F., Xanthakis V. (201) Arteriosclerosis, Atherosclerosis, and Cardiovascular Health: Joint Relations to the Incidence of Cardiovascular Disease. Hypertension, 78, 1232–1240.

36. Ferizoli R, Karimpour P, May JM, Kyriacou PA. (2024) Arterial stiffness assessment using PPG feature extraction and significance testing in an in vitro cardiovascular system. Sci Rep.;14(1):2024. doi: 10.1038/s41598-024-51395-y. PMID: 38263412; PMCID: PMC10806047.

37. Szołtysek-Bołdys I., Zielińska-Danch W., Łoboda D., Gołba K.S., Sarecka-Hujar, B. (2024) Do Photopletysmographic Parameters of Arterial Stiffness Differ Depending on the Presence of Arterial Hypertension and/or Atherosclerosis? Sensors , 24, 4572. https://doi.org/10.3390/s24144572

38. Podrug M., Koren, P., Dražić Maras E., Podrug J., Čulić V., Perissiou M., Bruno R.M., Mudnić I., Boban M., Jerončić A. (2023) Long-Term Adverse Effects of Mild COVID-19 Disease on Arterial Stiffness, and Systemic and Central Hemodynamics: A Pre-Post Study. J. Clin. Med. 12, 2123.

39. A. Vallée. (2023) Added Value of Arterial Stiffness Index for the 10-Year Atherosclerotic Cardiovascular Disease Risk Determination in a Middle Aged Population-Based Study. Clinical Research in Cardiology 112, no. 11: 1679–1689.

40. Chen H., Fan F., Ye Z., Liang Z., Qin X., Zhang Y. (2025) Photoplethysmography-Derived Arterial Stiffness Index Delivered Greater Cardiovascular Prevention Value to Non-Elderly: A Retrospective Cohort Study Based on UK Biobank. Journal of Clinical Hypertension.;27(5):e70058. DOI: 10.1111/jch.70058

41. Dewig, H. G., Cohen, J. N., et al. (2023). Electrocardiogram and Photoplethysmogram-based Heart Rate Variability Are Not Equivalent: A Bayesian Simulation Analysis [Preprint]. medRxiv. https://doi.org/10.1101/2023.08.24.23294449

42. Zieff et al. (2023). Pulse-wave velocity assessments derived from a simple photoplethysmography device: Agreement with a referent device. Frontiers in Cardiovascular Medicine. DOI: 10.3389/fcvm.2023.1108219

43. Vargas J. M., Bahloul M. A., Boularas M. M., Yuceel K., Aridhi S., Laleg-Kirati, T.M. (2025). Assessment of pulse wave velocity through weighted visibility graph metrics from photoplethysmographic signals. Scientific Reports, 15, 31325. https://doi.org/10.1038/s41598-025-16598-x

44. Hellqvist H., Karlsson M., Hoffman J., Kahan T., & Spaak J. (2024). Estimation of aortic stiffness by finger photoplethysmography using enhanced pulse wave analysis and machine learning. Frontiers in Cardiovascular Medicine, 11, Article 1350726. https://doi.org/10.3389/fcvm.2024.1350726

45. Abdullah S, Kristoffersson A. (2023) Machine learning approaches for cardiovascular hypertension stage estimation using photoplethysmography and clinical features. Front Cardiovasc Med.;10:1285066. doi: 10.3389/fcvm.2023.1285066. PMID: 38111893; PMCID: PMC10725938.

46. Barthels, M., Gruwez, H., De Cooman, T., Duncker, D., & Vandervoort, P. (2024). Predicting age from real-world smartphone-acquired PPG. In Proceedings of Computing in Cardiology (CinC) 2024. https://www.cinc.org/archives/2024/pdf/CinC2024-293.pdf

47. Nie G., Zhao Q., Tang G. et al. (2025). Artificial Intelligence derived Photoplethysmography Age as a Digital Biomarker for Cardiovascular Health. arXiv. arXiv:2502.129902982-3021. doi: 10.1016/j.jacc.2020.11.010.


Review

For citations:


Bugibayeva B., Abzaliyeva А., Abzaliyev B., Abdirova М., Suleimenova U., Datkabayeva A. CLINICAL PERSPECTIVES ON PHOTOPLETHYSMOGRAPHY IN IDENTIFYING THE RISK OF DEVELOPING CARDIOVASCULAR DISEASES. Actual Problems of Theoretical and Clinical Medicine. 2025;(4):120-136. https://doi.org/10.64854/2790-1289-2025-50-4-09

Views: 46

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2790-1289 (Print)
ISSN 2790-1297 (Online)