Preview

Actual Problems of Theoretical and Clinical Medicine

Advanced search

Analysis of clinical decision support system types in outpatient facilities

https://doi.org/10.24412/2790-1289-2023-2-31-36

Abstract

Clinical Decision Support Systems (CDSS) play a crucial role in improving patient care by providing healthcare providers with valuable information and decision support tools [1].

This research review aims to examine and evaluate the effectiveness and impact of CDSS in outpatient facilities.

A comprehensive literature review was conducted to gather relevant studies on CDSS implementation in outpatient settings. The analysis identified various CDSS types, including alerts and reminders, decision rules, and information and education systems. The results indicate that CDSS implementation in outpatient facilities enhances the quality of care, reduces costs, empowers patients, supports clinicians in decision-making, and improves continuity of care. The integration of CDSS with electronic health records streamlines workflow, optimizes resource utilization, and facilitates efficient care coordination. Despite challenges related to integration and ethical considerations, CDSS has the potential to revolutionize outpatient healthcare delivery [2]. Future directions involve advancing interoperability standards, incorporating artificial intelligence, and conducting long-term studies to evaluate the impact on patient outcomes and cost-effectiveness [3]. In conclusion, CDSS in outpatient facilities have significant implications for improving patient care and healthcare processes, with the potential to enhance health outcomes and patient experiences.

Methods: Literature Review.

About the Authors

I. Poluboiartsev
NEI «Kazakh-Russian Medical University»
Kazakhstan

Igor Poluboiartsev

Almaty



N. Jainakbayev
NEI «Kazakh-Russian Medical University»
Kazakhstan

Nurlan Jainakbayev, MD, Professor

Almaty



References

1. Muhiyaddin R., Abd - Alrazaq A.A., Househ M., Alam T., Shah Z. The Impact of Clinical Decision Support Systems (CDSS) on Physicians: A Scoping Review. Stud Health Technol Inform. 2020 Jun 26; 272:470 - 473. doi: 10.3233/SHTI200597. PMID: 32604704.

2. Peiffer-Smadja N., Rawson T.M.., Ahmad R, Buchard A., Georgiou P., Lescure F.X., Birgand G., Holmes A.H. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin Microbiol Infect. 2020 May; 26 (5): 584 - 595. doi: 10.1016/j.cmi.2019.09.009. Epub 2019 Sep 17. Erratum in: Clin Microbiol Infect. 2020 Aug; 26 (8):1118. PMID: 31539636.

3. Kilsdonk E., Peute L.W., Jaspers M.W. Factors influencing implementation success of guideline-based clinical decision support systems: A systematic review and gaps analysis. Int J Med Inform. 2017 Feb; 98: 56 - 64. doi: 10.1016/j.ijmedinf.2016.12.001. Epub 2016 Dec 5. PMID: 28034413.

4. Harada T., Miyagami T., Kunitomo K., Shimizu T. Clinical Decision Support Systems for Diagnosis in Primary Care: A Scoping Review. Int J Environ Res Public Health. 2021 Aug 10;18(16):8435. doi: 10.3390/ijerph18168435. PMID: 34444182; PMCID: PMC8391274.

5. Mebrahtu T.F., Skyrme S., Randell R., Keenan A.M., Bloor K., Yang H., Andre D., Ledward A., King H., Thompson C. Effects of computerised clinical decision support systems (CDSS) on nursing and allied health professional performance and patient outcomes: a systematic review of experimental and observational studies. BMJ Open. 2021 Dec 15;11(12): e053886. doi: 10.1136/bmjopen-2021-053886. PMID: 34911719; PMCID: PMC8679061.

6. Schaarup C., Pape-Haugaard L.B., Hejlesen O.K. Models Used in Clinical Decision Support Systems Supporting Healthcare Professionals Treating Chronic Wounds: Systematic Literature Review. JMIR Diabetes. 2018 Jun 21; 3 (2): e11. doi: 10.2196/diabetes.8316. PMID: 30291078; PMCID: PMC6238865.

7. Sutton R.T., Pincock D.., Baumgart D.C., Sadowski D.C., Fedorak R.N., Kroeker K.I. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med. 2020 Feb 6; 3:17. doi: 10.1038/s41746-020-0221-y. PMID: 32047862; PMCID: PMC7005290.

8. Ciapponi A., Fernandez Nievas S.E., Seijo M., Rodríguez M.B., Vietto V., García-Perdomo H.A., Virgilio S., Fajreldines A.V., Tost J., Rose C.J., Garcia-Elorrio E. Reducing medication errors for adults in hospital settings. Cochrane Database Syst Rev. 2021 Nov 25; 11 (11): CD009985. doi: 10.1002/14651858.CD009985.pub2. PMID: 34822165; PMCID: PMC8614640.

9. Strockbine V.L., Gehrie E.A., Zhou Q.P., Guzzetta C.E. Reducing Unnecessary Phlebotomy Testing Using a Clinical Decision Support System. J Healthc Qual. 2020 Mar/Apr;42(2):98-105. doi: 10.1097/JHQ.0000000000000245. PMID: 31972663.

10. Gallagher J., O'Sullivan D., McCarthy S., Gillespie P., Woods N., O'Mahony D., Byrne S. Structured Pharmacist Review of Medication in Older Hospitalised Patients: A Cost-Effectiveness Analysis. Drugs Aging. 2016 Apr; 33 (4): 285-94. doi: 10.1007/s40266-016-0348-3. PMID: 26861468.

11. Cox J.L., Parkash R., Abidi S.S., Thabane L., Xie F., MacKillop J., Abidi S.R., Ciaccia A., Choudhri S.H., Abusharekh A., Nemis-White J.; IMPACT-AF Investigators. Optimizing primary care management of atrial fibrillation: The rationale and methods of the Integrated Management Program Advancing Community Treatment of Atrial Fibrillation (IMPACT-AF) study. Am Heart J. 2018 Jul; 201:149-157. doi: 10.1016/j.ahj.2018.04.008. Epub 2018 Apr 7. PMID: 29807323.

12. Bilici E., Despotou G., Arvanitis T.N. The use of computer-interpretable clinical guidelines to manage care complexities of patients with multimorbid conditions: A review. Digit Health. 2018 Oct 3; 4:2055207618804927. doi: 10.1177/2055207618804927. PMID: 30302270; PMCID: PMC6172935.

13. Baker J.D. The Purpose, Process, and Methods of Writing a Literature Review. AORN J. 2016 Mar;103(3): 265-9. doi: 10.1016/j.aorn.2016.01.016. PMID: 26924364.

14. Wasylewicz A.T.-M., Scheepers-Hoeks AM.-JW. Clinical Decision Support Systems. 2018 Dec 22. In: Kubben P., Dumontier M., Dekker A., editors. Fundamentals of Clinical Data Science [Internet]. Cham (CH): Springer; 2019. Chapter 11. PMID: 31314237.

15. Olufisayo O., Mohd Yusof M., Ezat Wan Puteh S. Enhancing CDSS Alert Appropriateness in Clinical Workflow Using the Lean Method. Stud Health Technol Inform. 2018; 255:112-116. PMID: 30306918.

16. Jeong H., Kamaleswaran R. Pivotal challenges in artificial intelligence and machine learning applications for neonatal care. Semin Fetal Neonatal Med. 2022 Oct; 27 (5):101393. doi: 10.1016/j.siny.2022.101393. Epub 2022 Oct 13. PMID: 36266181.


Review

For citations:


Poluboiartsev I., Jainakbayev N. Analysis of clinical decision support system types in outpatient facilities. Actual Problems of Theoretical and Clinical Medicine. 2023;(2):31-36. https://doi.org/10.24412/2790-1289-2023-2-31-36

Views: 239


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2790-1289 (Print)
ISSN 2790-1297 (Online)